|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectcc.mallet.share.upenn.MaxEntShell
public class MaxEntShell
Simple wrapper for training a MALLET maxent classifier.
| Method Summary | |
|---|---|
static Classification[] |
classify(Classifier classifier,
java.util.Iterator<Instance> data)
Compute the maxent classifications for unlabeled instances given by an iterator. |
static Classification |
classify(Classifier classifier,
java.lang.String[] features)
Compute the maxent classification of an instance. |
static Classification[] |
classify(Classifier classifier,
java.lang.String[][] features)
Compute the maxent classifications of an array of instances |
static Classifier |
load(java.io.File modelFile)
Load a classifier from a file. |
static void |
main(java.lang.String[] args)
Command-line wrapper to train, test, or run a maxent classifier. |
static double |
test(Classifier classifier,
java.util.Iterator<Instance> data)
Test a maxent classifier. |
static double |
test(Classifier classifier,
java.lang.String[][] features,
java.lang.String[] labels)
Test a maxent classifier. |
static Classifier |
train(java.util.Iterator<Instance> data,
double var,
java.io.File save)
Train a maxent classifier. |
static Classifier |
train(java.lang.String[][] features,
java.lang.String[] labels,
double var,
java.io.File save)
Train a maxent classifier. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Method Detail |
|---|
public static Classifier train(java.lang.String[][] features,
java.lang.String[] labels,
double var,
java.io.File save)
throws java.io.IOException
features
represents the features of a training instance. The label for
that instance is in the corresponding position of
labels.
features - Each row gives the on features of an instancelabels - Each position gives the label of an instancevar - Gaussian prior variance for trainingsave - if non-null, save the trained model to this file
java.io.IOException - if the trained model cannot be saved
public static Classifier train(java.util.Iterator<Instance> data,
double var,
java.io.File save)
throws java.io.IOException
data returns
training instances with a TokenSequence as data and a
target object. The tokens in the instance data will be converted to
features.
data - the iterator over training instancesvar - Gaussian prior variance for training.save - if non-null, save the trained model to this file
java.io.IOException - if the trained model cannot be saved
public static double test(Classifier classifier,
java.lang.String[][] features,
java.lang.String[] labels)
classifier - the classifier to testfeatures - an array of instances represented as arrays of featureslabels - corresponding labels
public static double test(Classifier classifier,
java.util.Iterator<Instance> data)
classifier - the classifier to testdata - an iterator over labeled instances
public static Classification classify(Classifier classifier,
java.lang.String[] features)
classifier - the classifierfeatures - the features that are on for this instance
public static Classification[] classify(Classifier classifier,
java.lang.String[][] features)
classifier - the classifierfeatures - each row represents the on features for an instance
public static Classification[] classify(Classifier classifier,
java.util.Iterator<Instance> data)
classifier - the classifierdata - the iterator over unlabeled instances
public static Classifier load(java.io.File modelFile)
throws java.io.IOException,
java.lang.ClassNotFoundException
modelFile - the file
java.io.IOException - if the file cannot be opened or read
java.lang.ClassNotFoundException - if the file does not deserialize
public static void main(java.lang.String[] args)
throws java.lang.Exception
args - the command line arguments. Options (shell and Java quoting should be added as needed):
--help booleantrue for longer documentation. Default is false.--prefix-code Java-code--gaussian-variance positive-number--train filenane--test filename--classify filename--model filenamejava.lang.Exception - if an error occurs
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||