|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Deprecated Interfaces | |
---|---|
cc.mallet.optimize.Optimizer.ByBatches
|
|
cc.mallet.types.Vector
|
Deprecated Classes | |
---|---|
cc.mallet.pipe.BranchingPipe
|
|
cc.mallet.types.ChainedInstanceIterator
|
|
cc.mallet.topics.LDA
Use ParallelTopicModel instead. |
|
cc.mallet.topics.LDAHyper
Use ParallelTopicModel instead, which uses substantially faster data structures even for non-parallel operation. |
|
cc.mallet.types.Matrix2
|
|
cc.mallet.grmm.util.PipedIterator
|
|
cc.mallet.pipe.iterator.PipeExtendedIterator
|
|
cc.mallet.pipe.iterator.PipeInputIterator
|
|
cc.mallet.fst.ShallowTransducerTrainer
Use NoopTransducerTrainer instead |
Deprecated Methods | |
---|---|
cc.mallet.types.InstanceList.add(Object, Object, Object, Object)
Use trainingset.add (new Instance(data,target,name,source)) instead. |
|
cc.mallet.types.InstanceList.add(Object, Object, Object, Object, double)
Use trainingset.addThruPipe (new Instance(data,target,name,source)) instead. |
|
cc.mallet.util.Randoms.asJavaRandom()
|
|
cc.mallet.types.MatrixOps.dot(double[], double[])
Use dotProduct() |
|
cc.mallet.fst.CRF.evaluate(TransducerEvaluator, InstanceList)
|
|
cc.mallet.types.Instance.getProperties()
|
|
cc.mallet.fst.Transducer.TransitionIterator.nextState()
|
|
cc.mallet.types.InstanceList.noisify(double)
|
|
cc.mallet.fst.Transducer.TransitionIterator.numberNext()
|
|
cc.mallet.fst.CRF.predict(InstanceList)
|
|
cc.mallet.fst.HMM.reset()
|
|
cc.mallet.grmm.types.Assignment.restriction(Assignment, VarSet)
marginalize |
|
cc.mallet.types.InstanceList.sampleWithInstanceWeights(Random)
|
|
cc.mallet.types.Instance.setPropertyList(PropertyList)
|
Deprecated Constructors | |
---|---|
cc.mallet.util.CommandOption(Class, String, String, Class, boolean, String)
|
|
cc.mallet.types.InstanceList()
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |