|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use CRF | |
---|---|
cc.mallet.extract | Unimplemented. |
cc.mallet.fst | Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.fst.semi_supervised | |
cc.mallet.fst.semi_supervised.pr | |
cc.mallet.fst.semi_supervised.tui |
Uses of CRF in cc.mallet.extract |
---|
Methods in cc.mallet.extract that return CRF | |
---|---|
CRF |
CRFExtractor.getCrf()
|
Constructors in cc.mallet.extract with parameters of type CRF | |
---|---|
CRFExtractor(CRF crf)
|
|
CRFExtractor(CRF crf,
Pipe tokpipe)
|
|
CRFExtractor(CRF crf,
Pipe tokpipe,
TokenizationFilter filter)
|
|
CRFExtractor(CRF crf,
Pipe tokpipe,
TokenizationFilter filter,
java.lang.String backgroundTag)
|
Uses of CRF in cc.mallet.fst |
---|
Subclasses of CRF in cc.mallet.fst | |
---|---|
class |
MEMM
A Maximum Entropy Markov Model. |
Fields in cc.mallet.fst declared as CRF | |
---|---|
protected CRF |
CRFTrainerByStochasticGradient.crf
|
protected CRF |
CRFOptimizableByLabelLikelihood.crf
|
protected CRF |
CRFOptimizableByBatchLabelLikelihood.crf
|
protected CRF |
CRFCacheStaleIndicator.crf
|
Methods in cc.mallet.fst that return CRF | |
---|---|
CRF |
CRFTrainerByValueGradients.getCRF()
|
CRF |
CRFTrainerByThreadedLabelLikelihood.getCRF()
|
CRF |
CRFTrainerByLabelLikelihood.getCRF()
|
static CRF |
SimpleTagger.train(InstanceList training,
InstanceList testing,
TransducerEvaluator eval,
int[] orders,
java.lang.String defaultLabel,
java.lang.String forbidden,
java.lang.String allowed,
boolean connected,
int iterations,
double var,
CRF crf)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
Methods in cc.mallet.fst with parameters of type CRF | |
---|---|
Optimizable.ByGradientValue |
CRFOptimizableByLabelLikelihood.Factory.newCRFOptimizable(CRF crf,
InstanceList trainingData)
|
Optimizable.ByCombiningBatchGradient |
CRFOptimizableByBatchLabelLikelihood.Factory.newCRFOptimizable(CRF crf,
InstanceList trainingData,
int numBatches)
|
protected CRF.State |
MEMM.newState(java.lang.String name,
int index,
double initialWeight,
double finalWeight,
java.lang.String[] destinationNames,
java.lang.String[] labelNames,
java.lang.String[][] weightNames,
CRF crf)
|
protected CRF.State |
CRF.newState(java.lang.String name,
int index,
double initialWeight,
double finalWeight,
java.lang.String[] destinationNames,
java.lang.String[] labelNames,
java.lang.String[][] weightNames,
CRF crf)
|
static CRF |
SimpleTagger.train(InstanceList training,
InstanceList testing,
TransducerEvaluator eval,
int[] orders,
java.lang.String defaultLabel,
java.lang.String forbidden,
java.lang.String allowed,
boolean connected,
int iterations,
double var,
CRF crf)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
Constructors in cc.mallet.fst with parameters of type CRF | |
---|---|
CRF.Factors(CRF crf)
Construct a new Factors with the same structure as the parameters of 'crf', but with values initialized to zero. |
|
CRF.State(java.lang.String name,
int index,
double initialWeight,
double finalWeight,
java.lang.String[] destinationNames,
java.lang.String[] labelNames,
java.lang.String[][] weightNames,
CRF crf)
|
|
CRF.TransitionIterator(CRF.State source,
FeatureVectorSequence inputSeq,
int inputPosition,
java.lang.String output,
CRF crf)
|
|
CRF.TransitionIterator(CRF.State source,
FeatureVector fv,
java.lang.String output,
CRF crf)
|
|
CRF(CRF other)
Create a CRF whose states and weights are a copy of those from another CRF. |
|
CRFCacheStaleIndicator(CRF crf)
|
|
CRFOptimizableByBatchLabelLikelihood(CRF crf,
InstanceList ilist,
int numBatches)
|
|
CRFOptimizableByGradientValues(CRF crf,
Optimizable.ByGradientValue[] opts)
|
|
CRFOptimizableByLabelLikelihood(CRF crf,
InstanceList ilist)
|
|
CRFTrainerByL1LabelLikelihood(CRF crf)
|
|
CRFTrainerByL1LabelLikelihood(CRF crf,
double l1Weight)
Constructor for CRF trainer. |
|
CRFTrainerByLabelLikelihood(CRF crf)
|
|
CRFTrainerByStochasticGradient(CRF crf,
double learningRate)
|
|
CRFTrainerByStochasticGradient(CRF crf,
InstanceList trainingSample)
|
|
CRFTrainerByThreadedLabelLikelihood(CRF crf,
int numThreads)
|
|
CRFTrainerByValueGradients.OptimizableCRF(CRF crf,
InstanceList ilist)
|
|
CRFTrainerByValueGradients(CRF crf,
Optimizable.ByGradientValue[] optimizableByValueGradientObjects)
|
|
MEMM.State(java.lang.String name,
int index,
double initialCost,
double finalCost,
java.lang.String[] destinationNames,
java.lang.String[] labelNames,
java.lang.String[][] weightNames,
CRF crf)
|
|
MEMM.TransitionIterator(MEMM.State source,
FeatureVectorSequence inputSeq,
int inputPosition,
java.lang.String output,
CRF memm)
|
|
MEMM.TransitionIterator(MEMM.State source,
FeatureVector fv,
java.lang.String output,
CRF memm)
|
|
MEMM(CRF crf)
|
Uses of CRF in cc.mallet.fst.semi_supervised |
---|
Fields in cc.mallet.fst.semi_supervised declared as CRF | |
---|---|
protected CRF |
CRFOptimizableByEntropyRegularization.crf
|
Methods in cc.mallet.fst.semi_supervised with parameters of type CRF | |
---|---|
void |
CRFOptimizableByGE.createReverseTransitionMatrices(CRF crf)
Initializes data structures for mapping between a destination state and its source states / transition indices. |
Constructors in cc.mallet.fst.semi_supervised with parameters of type CRF | |
---|---|
CRFOptimizableByEntropyRegularization(CRF crf,
InstanceList ilist)
Initializes the structures (sets the scaling factor to 1.0). |
|
CRFOptimizableByEntropyRegularization(CRF crf,
InstanceList ilist,
double scalingFactor)
Initializes the structures. |
|
CRFOptimizableByGE(CRF crf,
java.util.ArrayList<GEConstraint> constraints,
InstanceList data,
StateLabelMap map,
int numThreads)
|
|
CRFOptimizableByGE(CRF crf,
java.util.ArrayList<GEConstraint> constraints,
InstanceList data,
StateLabelMap map,
int numThreads,
double weight)
|
|
CRFTrainerByEntropyRegularization(CRF crf)
|
|
CRFTrainerByGE(CRF crf,
java.util.ArrayList<GEConstraint> constraints)
|
|
CRFTrainerByGE(CRF crf,
java.util.ArrayList<GEConstraint> constraints,
int numThreads)
|
|
CRFTrainerByLikelihoodAndGE(CRF crf,
java.util.ArrayList<GEConstraint> constraints,
StateLabelMap map)
|
Uses of CRF in cc.mallet.fst.semi_supervised.pr |
---|
Fields in cc.mallet.fst.semi_supervised.pr declared as CRF | |
---|---|
protected CRF |
CRFOptimizableByKL.crf
|
protected CRF |
ConstraintsOptimizableByPR.crf
|
Methods in cc.mallet.fst.semi_supervised.pr that return CRF | |
---|---|
CRF |
PRAuxiliaryModel.getBaseModel()
|
Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type CRF | |
---|---|
ConstraintsOptimizableByPR(CRF crf,
InstanceList ilist,
PRAuxiliaryModel model)
|
|
ConstraintsOptimizableByPR(CRF crf,
InstanceList ilist,
PRAuxiliaryModel model,
int numThreads)
|
|
CRFOptimizableByKL(CRF crf,
InstanceList trainingSet,
PRAuxiliaryModel auxModel,
double[][][][] cachedDots,
int numThreads,
double weight)
|
|
CRFTrainerByPR(CRF crf,
java.util.ArrayList<PRConstraint> constraints)
|
|
CRFTrainerByPR(CRF crf,
java.util.ArrayList<PRConstraint> constraints,
int numThreads)
|
|
PRAuxiliaryModel(CRF baseModel,
java.util.ArrayList<PRConstraint> constraints)
|
Uses of CRF in cc.mallet.fst.semi_supervised.tui |
---|
Methods in cc.mallet.fst.semi_supervised.tui that return CRF | |
---|---|
static CRF |
SimpleTaggerWithConstraints.getCRF(InstanceList training,
int[] orders,
java.lang.String defaultLabel,
java.lang.String forbidden,
java.lang.String allowed,
boolean connected)
|
static CRF |
SimpleTaggerWithConstraints.trainGE(InstanceList training,
InstanceList testing,
java.util.ArrayList<GEConstraint> constraints,
CRF crf,
TransducerEvaluator eval,
int iterations,
double var,
int resets)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
static CRF |
SimpleTaggerWithConstraints.trainPR(InstanceList training,
InstanceList testing,
java.util.ArrayList<PRConstraint> constraints,
CRF crf,
TransducerEvaluator eval,
int iterations,
double var)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
Methods in cc.mallet.fst.semi_supervised.tui with parameters of type CRF | |
---|---|
static CRF |
SimpleTaggerWithConstraints.trainGE(InstanceList training,
InstanceList testing,
java.util.ArrayList<GEConstraint> constraints,
CRF crf,
TransducerEvaluator eval,
int iterations,
double var,
int resets)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
static CRF |
SimpleTaggerWithConstraints.trainPR(InstanceList training,
InstanceList testing,
java.util.ArrayList<PRConstraint> constraints,
CRF crf,
TransducerEvaluator eval,
int iterations,
double var)
Create and train a CRF model from the given training data, optionally testing it on the given test data. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |