Uses of Class
cc.mallet.fst.CRF

Packages that use CRF
cc.mallet.extract Unimplemented. 
cc.mallet.fst Transducers, including Conditional Random Fields (CRFs). 
cc.mallet.fst.semi_supervised   
cc.mallet.fst.semi_supervised.pr   
cc.mallet.fst.semi_supervised.tui   
 

Uses of CRF in cc.mallet.extract
 

Methods in cc.mallet.extract that return CRF
 CRF CRFExtractor.getCrf()
           
 

Constructors in cc.mallet.extract with parameters of type CRF
CRFExtractor(CRF crf)
           
CRFExtractor(CRF crf, Pipe tokpipe)
           
CRFExtractor(CRF crf, Pipe tokpipe, TokenizationFilter filter)
           
CRFExtractor(CRF crf, Pipe tokpipe, TokenizationFilter filter, java.lang.String backgroundTag)
           
 

Uses of CRF in cc.mallet.fst
 

Subclasses of CRF in cc.mallet.fst
 class MEMM
          A Maximum Entropy Markov Model.
 

Fields in cc.mallet.fst declared as CRF
protected  CRF CRFTrainerByStochasticGradient.crf
           
protected  CRF CRFOptimizableByLabelLikelihood.crf
           
protected  CRF CRFOptimizableByBatchLabelLikelihood.crf
           
protected  CRF CRFCacheStaleIndicator.crf
           
 

Methods in cc.mallet.fst that return CRF
 CRF CRFTrainerByValueGradients.getCRF()
           
 CRF CRFTrainerByThreadedLabelLikelihood.getCRF()
           
 CRF CRFTrainerByLabelLikelihood.getCRF()
           
static CRF SimpleTagger.train(InstanceList training, InstanceList testing, TransducerEvaluator eval, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected, int iterations, double var, CRF crf)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.
 

Methods in cc.mallet.fst with parameters of type CRF
 Optimizable.ByGradientValue CRFOptimizableByLabelLikelihood.Factory.newCRFOptimizable(CRF crf, InstanceList trainingData)
           
 Optimizable.ByCombiningBatchGradient CRFOptimizableByBatchLabelLikelihood.Factory.newCRFOptimizable(CRF crf, InstanceList trainingData, int numBatches)
           
protected  CRF.State MEMM.newState(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
           
protected  CRF.State CRF.newState(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
           
static CRF SimpleTagger.train(InstanceList training, InstanceList testing, TransducerEvaluator eval, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected, int iterations, double var, CRF crf)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.
 

Constructors in cc.mallet.fst with parameters of type CRF
CRF.Factors(CRF crf)
          Construct a new Factors with the same structure as the parameters of 'crf', but with values initialized to zero.
CRF.State(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
           
CRF.TransitionIterator(CRF.State source, FeatureVectorSequence inputSeq, int inputPosition, java.lang.String output, CRF crf)
           
CRF.TransitionIterator(CRF.State source, FeatureVector fv, java.lang.String output, CRF crf)
           
CRF(CRF other)
          Create a CRF whose states and weights are a copy of those from another CRF.
CRFCacheStaleIndicator(CRF crf)
           
CRFOptimizableByBatchLabelLikelihood(CRF crf, InstanceList ilist, int numBatches)
           
CRFOptimizableByGradientValues(CRF crf, Optimizable.ByGradientValue[] opts)
           
CRFOptimizableByLabelLikelihood(CRF crf, InstanceList ilist)
           
CRFTrainerByL1LabelLikelihood(CRF crf)
           
CRFTrainerByL1LabelLikelihood(CRF crf, double l1Weight)
          Constructor for CRF trainer.
CRFTrainerByLabelLikelihood(CRF crf)
           
CRFTrainerByStochasticGradient(CRF crf, double learningRate)
           
CRFTrainerByStochasticGradient(CRF crf, InstanceList trainingSample)
           
CRFTrainerByThreadedLabelLikelihood(CRF crf, int numThreads)
           
CRFTrainerByValueGradients.OptimizableCRF(CRF crf, InstanceList ilist)
           
CRFTrainerByValueGradients(CRF crf, Optimizable.ByGradientValue[] optimizableByValueGradientObjects)
           
MEMM.State(java.lang.String name, int index, double initialCost, double finalCost, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
           
MEMM.TransitionIterator(MEMM.State source, FeatureVectorSequence inputSeq, int inputPosition, java.lang.String output, CRF memm)
           
MEMM.TransitionIterator(MEMM.State source, FeatureVector fv, java.lang.String output, CRF memm)
           
MEMM(CRF crf)
           
 

Uses of CRF in cc.mallet.fst.semi_supervised
 

Fields in cc.mallet.fst.semi_supervised declared as CRF
protected  CRF CRFOptimizableByEntropyRegularization.crf
           
 

Methods in cc.mallet.fst.semi_supervised with parameters of type CRF
 void CRFOptimizableByGE.createReverseTransitionMatrices(CRF crf)
          Initializes data structures for mapping between a destination state and its source states / transition indices.
 

Constructors in cc.mallet.fst.semi_supervised with parameters of type CRF
CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist)
          Initializes the structures (sets the scaling factor to 1.0).
CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist, double scalingFactor)
          Initializes the structures.
CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads)
           
CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads, double weight)
           
CRFTrainerByEntropyRegularization(CRF crf)
           
CRFTrainerByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints)
           
CRFTrainerByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, int numThreads)
           
CRFTrainerByLikelihoodAndGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, StateLabelMap map)
           
 

Uses of CRF in cc.mallet.fst.semi_supervised.pr
 

Fields in cc.mallet.fst.semi_supervised.pr declared as CRF
protected  CRF CRFOptimizableByKL.crf
           
protected  CRF ConstraintsOptimizableByPR.crf
           
 

Methods in cc.mallet.fst.semi_supervised.pr that return CRF
 CRF PRAuxiliaryModel.getBaseModel()
           
 

Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type CRF
ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model)
           
ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model, int numThreads)
           
CRFOptimizableByKL(CRF crf, InstanceList trainingSet, PRAuxiliaryModel auxModel, double[][][][] cachedDots, int numThreads, double weight)
           
CRFTrainerByPR(CRF crf, java.util.ArrayList<PRConstraint> constraints)
           
CRFTrainerByPR(CRF crf, java.util.ArrayList<PRConstraint> constraints, int numThreads)
           
PRAuxiliaryModel(CRF baseModel, java.util.ArrayList<PRConstraint> constraints)
           
 

Uses of CRF in cc.mallet.fst.semi_supervised.tui
 

Methods in cc.mallet.fst.semi_supervised.tui that return CRF
static CRF SimpleTaggerWithConstraints.getCRF(InstanceList training, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected)
           
static CRF SimpleTaggerWithConstraints.trainGE(InstanceList training, InstanceList testing, java.util.ArrayList<GEConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var, int resets)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.
static CRF SimpleTaggerWithConstraints.trainPR(InstanceList training, InstanceList testing, java.util.ArrayList<PRConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.
 

Methods in cc.mallet.fst.semi_supervised.tui with parameters of type CRF
static CRF SimpleTaggerWithConstraints.trainGE(InstanceList training, InstanceList testing, java.util.ArrayList<GEConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var, int resets)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.
static CRF SimpleTaggerWithConstraints.trainPR(InstanceList training, InstanceList testing, java.util.ArrayList<PRConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var)
          Create and train a CRF model from the given training data, optionally testing it on the given test data.