cc.mallet.topics
Class HierarchicalPAM

java.lang.Object
  extended by cc.mallet.topics.HierarchicalPAM

public class HierarchicalPAM
extends java.lang.Object

Hierarchical PAM, where each node in the DAG has a distribution over all topics on the next level and one additional "node-specific" topic.

Author:
David Mimno

Field Summary
protected static java.util.logging.Logger logger
           
static int NUM_LEVELS
           
static int ROOT_TOPIC
           
static int SUB_TOPIC
           
static int SUPER_TOPIC
           
 
Constructor Summary
HierarchicalPAM(int superTopics, int subTopics, double superTopicBalance, double subTopicBalance)
           
 
Method Summary
 void estimate(InstanceList documents, InstanceList testing, int numIterations, int showTopicsInterval, int outputModelInterval, int optimizeInterval, java.lang.String outputModelFilename, Randoms r)
           
static void main(java.lang.String[] args)
           
 double modelLogLikelihood()
           
 void printState(java.io.File f)
           
 void printState(java.io.PrintWriter out)
           
 java.lang.String printTopWords(int numWords, boolean useNewLines)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

logger

protected static java.util.logging.Logger logger

NUM_LEVELS

public static final int NUM_LEVELS
See Also:
Constant Field Values

ROOT_TOPIC

public static final int ROOT_TOPIC
See Also:
Constant Field Values

SUPER_TOPIC

public static final int SUPER_TOPIC
See Also:
Constant Field Values

SUB_TOPIC

public static final int SUB_TOPIC
See Also:
Constant Field Values
Constructor Detail

HierarchicalPAM

public HierarchicalPAM(int superTopics,
                       int subTopics,
                       double superTopicBalance,
                       double subTopicBalance)
Method Detail

estimate

public void estimate(InstanceList documents,
                     InstanceList testing,
                     int numIterations,
                     int showTopicsInterval,
                     int outputModelInterval,
                     int optimizeInterval,
                     java.lang.String outputModelFilename,
                     Randoms r)

printTopWords

public java.lang.String printTopWords(int numWords,
                                      boolean useNewLines)

printState

public void printState(java.io.File f)
                throws java.io.IOException
Throws:
java.io.IOException

printState

public void printState(java.io.PrintWriter out)

modelLogLikelihood

public double modelLogLikelihood()

main

public static void main(java.lang.String[] args)
                 throws java.io.IOException
Throws:
java.io.IOException