Uses of Class
cc.mallet.types.FeatureVector

Packages that use FeatureVector
cc.mallet.classify.constraints.ge   
cc.mallet.classify.constraints.pr   
cc.mallet.cluster Unsupervised clustering of Instance objects within an InstanceList
cc.mallet.fst Transducers, including Conditional Random Fields (CRFs). 
cc.mallet.fst.semi_supervised.constraints   
cc.mallet.fst.semi_supervised.pr.constraints   
cc.mallet.grmm.learning   
cc.mallet.grmm.learning.templates   
cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc. 
cc.mallet.util Miscellaneous utilities including command line processing, math functions, lexing, logging. 
 

Uses of FeatureVector in cc.mallet.classify.constraints.ge
 

Methods in cc.mallet.classify.constraints.ge with parameters of type FeatureVector
 void MaxEntRangeL2FLGEConstraints.computeExpectations(FeatureVector input, double[] dist, double weight)
           
 void MaxEntGEConstraint.computeExpectations(FeatureVector fv, double[] dist, double weight)
          Compute expectations using provided distribution over labels.
 void MaxEntFLGEConstraints.computeExpectations(FeatureVector input, double[] dist, double weight)
           
 double MaxEntRangeL2FLGEConstraints.getCompositeConstraintFeatureValue(FeatureVector input, int label)
           
 double MaxEntGEConstraint.getCompositeConstraintFeatureValue(FeatureVector input, int label)
          Computes the composite constraint feature value (over all constraint features) for FeatureVector fv and label label.
 double MaxEntFLGEConstraints.getCompositeConstraintFeatureValue(FeatureVector input, int label)
           
 void MaxEntRangeL2FLGEConstraints.preProcess(FeatureVector input)
           
 void MaxEntGEConstraint.preProcess(FeatureVector input)
          Gives the constraint the option to do some caching using only the FeatureVector.
 void MaxEntFLGEConstraints.preProcess(FeatureVector input)
           
 

Uses of FeatureVector in cc.mallet.classify.constraints.pr
 

Methods in cc.mallet.classify.constraints.pr with parameters of type FeatureVector
 double MaxEntPRConstraint.getScore(FeatureVector input, int label, double[] parameters)
           
 double MaxEntL2FLPRConstraints.getScore(FeatureVector input, int label, double[] parameters)
           
 void MaxEntPRConstraint.incrementExpectations(FeatureVector fv, double[] dist, double weight)
           
 void MaxEntFLPRConstraints.incrementExpectations(FeatureVector input, double[] dist, double weight)
           
 void MaxEntPRConstraint.preProcess(FeatureVector input)
          Gives the constraint the option to do some caching using only the FeatureVector.
 void MaxEntFLPRConstraints.preProcess(FeatureVector input)
           
 

Uses of FeatureVector in cc.mallet.cluster
 

Methods in cc.mallet.cluster that return FeatureVector
 FeatureVector Record.values(int field)
           
 FeatureVector Record.values(java.lang.String field)
           
 

Uses of FeatureVector in cc.mallet.fst
 

Methods in cc.mallet.fst with parameters of type FeatureVector
 Transducer.TransitionIterator CRF.State.transitionIterator(FeatureVector fv, java.lang.String output)
           
 

Constructors in cc.mallet.fst with parameters of type FeatureVector
CRF.TransitionIterator(CRF.State source, FeatureVector fv, java.lang.String output, CRF crf)
           
MEMM.TransitionIterator(MEMM.State source, FeatureVector fv, java.lang.String output, CRF memm)
           
 

Uses of FeatureVector in cc.mallet.fst.semi_supervised.constraints
 

Methods in cc.mallet.fst.semi_supervised.constraints with parameters of type FeatureVector
 double TwoLabelGEConstraints.getCompositeConstraintFeatureValue(FeatureVector fv, int ip, int si1, int si2)
           
 double SelfTransitionGEConstraint.getCompositeConstraintFeatureValue(FeatureVector fv, int ip, int si1, int si2)
           
 double OneLabelL2RangeGEConstraints.getCompositeConstraintFeatureValue(FeatureVector fv, int ip, int si1, int si2)
           
 double OneLabelGEConstraints.getCompositeConstraintFeatureValue(FeatureVector fv, int ip, int si1, int si2)
           
 double GEConstraint.getCompositeConstraintFeatureValue(FeatureVector input, int inputPosition, int srcIndex, int destIndex)
          Computes the composite constraint feature value (over all constraint features) for FeatureVector fv and a transition from state li1 to li2.
 void TwoLabelGEConstraints.preProcess(FeatureVector fv)
           
 void SelfTransitionGEConstraint.preProcess(FeatureVector fv)
           
 void OneLabelL2RangeGEConstraints.preProcess(FeatureVector fv)
           
 void OneLabelGEConstraints.preProcess(FeatureVector fv)
           
 void GEConstraint.preProcess(FeatureVector input)
          Gives the constraint the option to do some caching using only the FeatureVector.
 

Uses of FeatureVector in cc.mallet.fst.semi_supervised.pr.constraints
 

Methods in cc.mallet.fst.semi_supervised.pr.constraints with parameters of type FeatureVector
 double PRConstraint.getScore(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double[] parameters)
           
 double OneLabelL2PRConstraints.getScore(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double[] parameters)
           
 double OneLabelL2IndPRConstraints.getScore(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double[] parameters)
           
 void PRConstraint.incrementExpectations(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double prob)
           
 void OneLabelL2PRConstraints.incrementExpectations(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double prob)
           
 void OneLabelL2IndPRConstraints.incrementExpectations(FeatureVector input, int inputPosition, int srcIndex, int destIndex, double prob)
           
 void PRConstraint.preProcess(FeatureVector input)
          Gives the constraint the option to do some caching using only the FeatureVector.
 void OneLabelL2PRConstraints.preProcess(FeatureVector fv)
           
 void OneLabelL2IndPRConstraints.preProcess(FeatureVector fv)
           
 

Uses of FeatureVector in cc.mallet.grmm.learning
 

Methods in cc.mallet.grmm.learning that return FeatureVector
 FeatureVector ACRF.UnrolledVarSet.getFv()
           
 

Constructors in cc.mallet.grmm.learning with parameters of type FeatureVector
ACRF.UnrolledVarSet(ACRF.UnrolledGraph graph, ACRF.Template tmpl, Variable[] vars, FeatureVector fv)
           
 

Uses of FeatureVector in cc.mallet.grmm.learning.templates
 

Methods in cc.mallet.grmm.learning.templates with parameters of type FeatureVector
 java.lang.String SimilarTokensTemplate.FeatureVectorBinner.computeBin(FeatureVector fv)
           
 java.lang.String SimilarTokensTemplate.WordFeatureBinner.computeBin(FeatureVector fv)
           
 

Uses of FeatureVector in cc.mallet.types
 

Subclasses of FeatureVector in cc.mallet.types
 class AugmentableFeatureVector
           
 class ExpGain
           
 class FeatureCounts
           
 class GainRatio
          List of features along with their thresholds sorted in descending order of the ratio of (1) information gained by splitting instances on the feature at its associated threshold value, to (2) the split information.
 class GradientGain
           
 class InfoGain
           
 class KLGain
           
 class LabelVector
           
 class Multinomial
          A probability distribution over a set of features represented as a FeatureVector.
static class Multinomial.Logged
          A Multinomial in which the values associated with each feature index fi is Math.log(probability[fi]) instead of probability[fi].
 class PartiallyRankedFeatureVector
           
 class RankedFeatureVector
           
 

Methods in cc.mallet.types that return FeatureVector
 FeatureVector FeatureVectorSequence.get(int i)
           
 FeatureVector FeatureVectorSequence.getFeatureVector(int i)
           
static FeatureVector FeatureVector.newFeatureVector(FeatureVector fv, Alphabet newVocab, FeatureSelection fs)
          Construct a new FeatureVector, selecting only those features in fs, and having new (presumably more compact, dense) Alphabet.
 FeatureVector FeatureVectorSequence.Iterator.next()
           
 FeatureVector Multinomial.randomFeatureVector(Randoms r, int size)
           
 FeatureVector Dirichlet.randomFeatureVector(Randoms r, int size)
           
 FeatureVector FeatureCounter.toFeatureVector()
           
 FeatureVector AugmentableFeatureVector.toFeatureVector()
           
 FeatureVector TokenSequence.toFeatureVector(Alphabet dict)
           
 FeatureVector Token.toFeatureVector(Alphabet dict, boolean binary)
           
 FeatureVector PropertyHolder.toFeatureVector(Alphabet dict, boolean binary)
           
 

Methods in cc.mallet.types with parameters of type FeatureVector
 void AugmentableFeatureVector.add(FeatureVector fv)
          Adds all indices that are present in some other feature vector with value 1.0.
 void AugmentableFeatureVector.add(FeatureVector fv, java.lang.String prefix)
          Adds all features from some other feature vector with weight 1.0.
 void AugmentableFeatureVector.add(FeatureVector fv, java.lang.String prefix, boolean binary)
          Adds all features from some other feature vector with weight 1.0.
 void Multinomial.Estimator.increment(FeatureVector fv)
           
 void Multinomial.Estimator.increment(FeatureVector fv, double scale)
           
static FeatureVector FeatureVector.newFeatureVector(FeatureVector fv, Alphabet newVocab, FeatureSelection fs)
          Construct a new FeatureVector, selecting only those features in fs, and having new (presumably more compact, dense) Alphabet.
 boolean FeatureConjunction.satisfiedBy(FeatureVector fv)
           
 

Constructors in cc.mallet.types with parameters of type FeatureVector
AugmentableFeatureVector(FeatureVector fv)
           
FeatureVector(FeatureVector fv, Alphabet newVocab, FeatureSelection fsNarrow, FeatureSelection fsWide)
           
FeatureVector(FeatureVector fv, Alphabet newVocab, int[] conjunctions)
          New feature vector containing all the features of "fv", plus new features created by making conjunctions between the features in "conjunctions" and all the other features.
FeatureVectorSequence(FeatureVector[] featureVectors)
           
StringEditFeatureVectorSequence(FeatureVector[] featureVectors, java.lang.String s1, java.lang.String s2)
           
StringEditFeatureVectorSequence(FeatureVector[] featureVectors, java.lang.String s1, java.lang.String s2, char delimiter)
           
StringEditFeatureVectorSequence(FeatureVector[] featureVectors, java.lang.String s1, java.lang.String s2, char delimiter, java.util.HashMap lexic)
           
StringEditFeatureVectorSequence(FeatureVector[] featureVectors, java.lang.String s1, java.lang.String s2, java.util.HashMap lexic)
           
 

Uses of FeatureVector in cc.mallet.util
 

Methods in cc.mallet.util that return FeatureVector
static FeatureVector MVNormal.nextFeatureVector(Alphabet alphabet, double[] mean, double[] precision, Randoms random)