Uses of Class
cc.mallet.types.SparseVector

Packages that use SparseVector
cc.mallet.cluster Unsupervised clustering of Instance objects within an InstanceList
cc.mallet.fst Transducers, including Conditional Random Fields (CRFs). 
cc.mallet.grmm.learning   
cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc. 
cc.mallet.util Miscellaneous utilities including command line processing, math functions, lexing, logging. 
 

Uses of SparseVector in cc.mallet.cluster
 

Methods in cc.mallet.cluster that return types with arguments of type SparseVector
 java.util.ArrayList<SparseVector> KMeans.getClusterMeans()
          Return the ArrayList of cluster means after a run of the algorithm.
 

Uses of SparseVector in cc.mallet.fst
 

Fields in cc.mallet.fst declared as SparseVector
 SparseVector[] CRF.Factors.weights
           
 

Methods in cc.mallet.fst that return SparseVector
 SparseVector[] CRF.getWeights()
           
 SparseVector CRF.getWeights(int weightIndex)
           
 SparseVector CRF.getWeights(java.lang.String weightName)
           
 

Methods in cc.mallet.fst with parameters of type SparseVector
 void CRF.setWeights(int weightsIndex, SparseVector transitionWeights)
           
 void CRF.setWeights(SparseVector[] m)
           
 void CRF.setWeights(java.lang.String weightName, SparseVector transitionWeights)
           
 

Uses of SparseVector in cc.mallet.grmm.learning
 

Fields in cc.mallet.grmm.learning declared as SparseVector
protected  SparseVector[] ACRF.Template.weights
           
 

Methods in cc.mallet.grmm.learning that return SparseVector
 SparseVector[] PwplACRFTrainer.Maxable.getConstraints(int cnum)
           
 SparseVector[] PseudolikelihoodACRFTrainer.Maxable.getConstraints(int cnum)
           
 SparseVector[] PiecewiseACRFTrainer.Maxable.getConstraints(int cnum)
           
 SparseVector[] ACRF.MaximizableACRF.getConstraints(int cnum)
           
 SparseVector ACRF.Template.getDefaultWeights()
           
 SparseVector ACRF.FixedFactorTemplate.getDefaultWeights()
           
 SparseVector[] PwplACRFTrainer.Maxable.getExpectations(int cnum)
           
 SparseVector[] PseudolikelihoodACRFTrainer.Maxable.getExpectations(int cnum)
           
 SparseVector[] PiecewiseACRFTrainer.Maxable.getExpectations(int cnum)
           
 SparseVector[] ACRF.MaximizableACRF.getExpectations(int cnum)
           
 SparseVector[] ACRF.Template.getWeights()
          Returns the weights for this clique template.
 SparseVector[] ACRF.FixedFactorTemplate.getWeights()
           
 

Methods in cc.mallet.grmm.learning with parameters of type SparseVector
 void ACRF.Template.setDefaultWeights(SparseVector w)
           
 void ACRF.Template.setWeights(SparseVector[] w)
           
 

Uses of SparseVector in cc.mallet.types
 

Subclasses of SparseVector in cc.mallet.types
 class AugmentableFeatureVector
           
 class ExpGain
           
 class FeatureCounts
           
 class FeatureVector
          A subset of an Alphabet in which each element of the subset has an associated value.
 class GainRatio
          List of features along with their thresholds sorted in descending order of the ratio of (1) information gained by splitting instances on the feature at its associated threshold value, to (2) the split information.
 class GradientGain
           
 class HashedSparseVector
           
 class IndexedSparseVector
           
 class InfoGain
           
 class KLGain
           
 class LabelVector
           
 class Multinomial
          A probability distribution over a set of features represented as a FeatureVector.
static class Multinomial.Logged
          A Multinomial in which the values associated with each feature index fi is Math.log(probability[fi]) instead of probability[fi].
 class PartiallyRankedFeatureVector
           
 class RankedFeatureVector
           
 

Methods in cc.mallet.types that return SparseVector
 SparseVector AugmentableFeatureVector.toSparseVector()
           
 SparseVector SparseVector.vectorAdd(SparseVector v, double scale)
           
 

Methods in cc.mallet.types with parameters of type SparseVector
 double NormalizedDotProductMetric.distance(SparseVector a, int hashCodeA, SparseVector b, int hashCodeB)
           
 double CachedMetric.distance(SparseVector a, int hashCodeA, SparseVector b, int hashCodeB)
           
 double NormalizedDotProductMetric.distance(SparseVector a, SparseVector b)
           
 double Minkowski.distance(SparseVector a, SparseVector b)
          Gives the Minkowski distance between two vectors.
 double Metric.distance(SparseVector a, SparseVector b)
           
 double SparseVector.dotProduct(SparseVector v)
           
 double IndexedSparseVector.dotProduct(SparseVector v)
           
 double HashedSparseVector.dotProduct(SparseVector v)
           
 double AugmentableFeatureVector.dotProduct(SparseVector v)
           
 double Minkowski.euclideanDistance(SparseVector a, SparseVector b)
           
 double SparseVector.extendedDotProduct(SparseVector v)
           
 void AugmentableFeatureVector.plusEquals(SparseVector v)
           
 void AugmentableFeatureVector.plusEquals(SparseVector v, double factor)
           
 void SparseVector.plusEqualsSparse(SparseVector v)
          For each index i that is present in this vector, set this[i] += v[i].
 void IndexedSparseVector.plusEqualsSparse(SparseVector v)
           
 void HashedSparseVector.plusEqualsSparse(SparseVector v)
           
 void SparseVector.plusEqualsSparse(SparseVector v, double factor)
          For each index i that is present in this vector, set this[i] += factor * v[i].
 void IndexedSparseVector.plusEqualsSparse(SparseVector v, double factor)
           
 void HashedSparseVector.plusEqualsSparse(SparseVector v, double factor)
           
 void SparseVector.timesEqualsSparse(SparseVector v)
          For each index i that is present in this vector, set this[i] *= v[i].
 void SparseVector.timesEqualsSparse(SparseVector v, double factor)
          For each index i that is present in this vector, set this[i] *= factor * v[i].
 void SparseVector.timesEqualsSparseZero(SparseVector v, double factor)
          For each index i that is present in this vector, set this[i] *= factor * v[i].
 SparseVector SparseVector.vectorAdd(SparseVector v, double scale)
           
 

Constructors in cc.mallet.types with parameters of type SparseVector
PartiallyRankedFeatureVector(Alphabet dict, SparseVector v)
           
RankedFeatureVector(Alphabet dict, SparseVector v)
           
 

Uses of SparseVector in cc.mallet.util
 

Methods in cc.mallet.util that return SparseVector
static SparseVector VectorStats.mean(InstanceList instances)
          Returns a SparseVector whose entries (taken from the union of those in the instances) are the expected values of those in the InstanceList.
static SparseVector VectorStats.mean(InstanceList instances, int numIndices)
          Returns a SparseVector whose entries (dense with the given number of indices) are the expected values of those in the InstanceList.
static SparseVector VectorStats.mean(InstanceList instances, int[] indices)
          Returns a SparseVector whose entries (the given indices) are the expected values of those in the InstanceList.
static SparseVector VectorStats.stddev(InstanceList instances)
          Square root of unbiased variance.
static SparseVector VectorStats.stddev(InstanceList instances, boolean unbiased)
          Square root of variance.
static SparseVector VectorStats.stddev(InstanceList instances, SparseVector mean)
          Square root of unbiased variance of instances having the given mean
static SparseVector VectorStats.stddev(InstanceList instances, SparseVector mean, boolean unbiased)
          Square root of variance.
static SparseVector VectorStats.variance(InstanceList instances)
          Returns unbiased variance
static SparseVector VectorStats.variance(InstanceList instances, boolean unbiased)
          Returns a SparseVector whose entries (taken from the union of those in the instances) are the variance of those in the InstanceList.
static SparseVector VectorStats.variance(InstanceList instances, SparseVector mean)
          Returns unbiased variance of instances having the given mean.
static SparseVector VectorStats.variance(InstanceList instances, SparseVector mean, boolean unbiased)
          Returns a SparseVector whose entries (taken from the mean argument) are the variance of those in the InstanceList.
 

Methods in cc.mallet.util with parameters of type SparseVector
static SparseVector VectorStats.stddev(InstanceList instances, SparseVector mean)
          Square root of unbiased variance of instances having the given mean
static SparseVector VectorStats.stddev(InstanceList instances, SparseVector mean, boolean unbiased)
          Square root of variance.
static SparseVector VectorStats.variance(InstanceList instances, SparseVector mean)
          Returns unbiased variance of instances having the given mean.
static SparseVector VectorStats.variance(InstanceList instances, SparseVector mean, boolean unbiased)
          Returns a SparseVector whose entries (taken from the mean argument) are the variance of those in the InstanceList.