|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object cc.mallet.classify.ClassifierTrainer<BalancedWinnow> cc.mallet.classify.BalancedWinnowTrainer
public class BalancedWinnowTrainer
An implementation of the training methods of a BalancedWinnow on-line classifier. Given a labeled instance (x, y) the algorithm computes dot(x, wi), for w1, ... , wc where wi is the weight vector for class i. The instance is classified as class j if the value of dot(x, wj) is the largest among the c dot products.
The weight vectors are updated whenever the the classifier makes a mistake or just barely got the correct answer (highest dot product is within delta percent higher than the second highest). Suppose the classifier guessed j and answer was j'. For each feature i that is present, multiply w_ji by (1-epsilon) and multiply w_j'i by (1+epsilon)
The above procedure is done multiple times to the training examples (default is 5), and epsilon is cut by the cooling rate at each iteration (default is cutting epsilon by half).
Nested Class Summary |
---|
Nested classes/interfaces inherited from class cc.mallet.classify.ClassifierTrainer |
---|
ClassifierTrainer.ByActiveLearning<C extends Classifier>, ClassifierTrainer.ByIncrements<C extends Classifier>, ClassifierTrainer.ByInstanceIncrements<C extends Classifier>, ClassifierTrainer.ByOptimization<C extends Classifier>, ClassifierTrainer.Factory<CT extends ClassifierTrainer<? extends Classifier>> |
Field Summary | |
---|---|
static double |
DEFAULT_COOLING_RATE
0.5 |
static double |
DEFAULT_DELTA
0.1 |
static double |
DEFAULT_EPSILON
0.5 |
static int |
DEFAULT_MAX_ITERATIONS
30 |
Fields inherited from class cc.mallet.classify.ClassifierTrainer |
---|
finishedTraining, validationSet |
Constructor Summary | |
---|---|
BalancedWinnowTrainer()
Default constructor. |
|
BalancedWinnowTrainer(double epsilon,
double delta,
int maxIterations,
double coolingRate)
|
Method Summary | |
---|---|
BalancedWinnow |
getClassifier()
|
BalancedWinnow |
train(InstanceList trainingList)
Trains the classifier on the instance list, updating class weight vectors as appropriate |
Methods inherited from class cc.mallet.classify.ClassifierTrainer |
---|
getValidationInstances, isFinishedTraining, setValidationInstances |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
public static final double DEFAULT_EPSILON
public static final double DEFAULT_DELTA
public static final int DEFAULT_MAX_ITERATIONS
public static final double DEFAULT_COOLING_RATE
Constructor Detail |
---|
public BalancedWinnowTrainer()
public BalancedWinnowTrainer(double epsilon, double delta, int maxIterations, double coolingRate)
epsilon
- percentage by which to increase/decrease weight vectors
when an example is misclassified.delta
- percentage by which the highest (and correct) dot product
should exceed the second highest dot product before we consider an example
to be correctly classified (margin width) when adjusting weights.maxIterations
- maximum number of times to loop through training examples.coolingRate
- percentage of epsilon to decrease after each iterationMethod Detail |
---|
public BalancedWinnow getClassifier()
getClassifier
in class ClassifierTrainer<BalancedWinnow>
public BalancedWinnow train(InstanceList trainingList)
train
in class ClassifierTrainer<BalancedWinnow>
trainingList
- Instance list to be trained on
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |