|
||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||
See:
Description
| Interface Summary | |
|---|---|
| Boostable | This interface is a tag indicating that the classifier attends to the InstanceList.getInstanceWeight() weights when training. |
| ClassifierTrainer.ByActiveLearning<C extends Classifier> | For active learning, in which this trainer will select certain instances and request that the Labeler instance label them. |
| ClassifierTrainer.ByIncrements<C extends Classifier> | For various kinds of online learning by batches, where training instances are presented, consumed for learning immediately. |
| ClassifierTrainer.ByInstanceIncrements<C extends Classifier> | For online learning that can operate on one instance at a time. |
| ClassifierTrainer.ByOptimization<C extends Classifier> | |
| Class Summary | |
|---|---|
| AdaBoost | AdaBoost Robert E. |
| AdaBoostM2 | AdaBoostM2 |
| AdaBoostM2Trainer | This version of AdaBoost can handle multi-class problems. |
| AdaBoostTrainer | This version of AdaBoost should be used only for binary classification. |
| BaggingClassifier | |
| BaggingTrainer | Bagging Trainer. |
| BalancedWinnow | Classification methods of BalancedWinnow algorithm. |
| BalancedWinnowTrainer | An implementation of the training methods of a BalancedWinnow on-line classifier. |
| C45 | A C4.5 Decision Tree classifier. |
| C45.Node | |
| C45Trainer | A C4.5 decision tree learner, approximtely. |
| Classification | The result of classifying a single instance. |
| Classifier | Abstract parent of all Classifiers. |
| ClassifierAccuracyEvaluator | |
| ClassifierEnsemble | Classifer for an ensemble of classifers, combined with learned weights. |
| ClassifierEnsembleTrainer | |
| ClassifierEvaluator | |
| ClassifierTrainer<C extends Classifier> | Each ClassifierTrainer trains one Classifier based on various interfaces for consuming training data. |
| ClassifierTrainer.Factory<CT extends ClassifierTrainer<? extends Classifier>> | Instances of a Factory know how to create new ClassifierTrainers to apply to new Classifiers. |
| ConfidencePredictingClassifier | |
| ConfidencePredictingClassifierTrainer | |
| DecisionTree | Decision Tree classifier. |
| DecisionTree.Node | |
| DecisionTreeTrainer | A decision tree learner, roughly ID3, but only to a fixed given depth in all branches. |
| DecisionTreeTrainer.Factory | |
| FeatureConstraintUtil | Utility functions for creating feature constraints that can be used with GE training. |
| FeatureSelectingClassifierTrainer | Adaptor for adding feature selection to a classifier trainer. |
| MaxEnt | Maximum Entropy (AKA Multivariate Logistic Regression) classifier. |
| MaxEntGERangeTrainer | Training of MaxEnt models with labeled features using Generalized Expectation Criteria. |
| MaxEntGETrainer | Training of MaxEnt models with labeled features using Generalized Expectation Criteria. |
| MaxEntL1Trainer | |
| MaxEntOptimizableByGE | |
| MaxEntOptimizableByLabelDistribution | |
| MaxEntOptimizableByLabelLikelihood | |
| MaxEntPRTrainer | Penalty (soft) version of Posterior Regularization (PR) for training MaxEnt. |
| MaxEntTrainer | The trainer for a Maximum Entropy classifier. |
| MCMaxEnt | Maximum Entropy classifier. |
| MCMaxEntTrainer | The trainer for a Maximum Entropy classifier. |
| NaiveBayes | A classifier that classifies instances according to the NaiveBayes method. |
| NaiveBayesEMTrainer | |
| NaiveBayesTrainer | Class used to generate a NaiveBayes classifier from a set of training data. |
| NaiveBayesTrainer.Factory | |
| PRAuxClassifier | Auxiliary model (q) for E-step/I-projection in PR training. |
| PRAuxClassifierOptimizable | Optimizable for training auxiliary model (q) for E-step/I-projection in PR training. |
| RankMaxEnt | Rank Maximum Entropy classifier. |
| RankMaxEntTrainer | The trainer for a RankMaxEnt classifier. |
| Trial | Stores the results of classifying a collection of Instances, and provides many methods for evaluating the results. |
| Winnow | Classification methods of Winnow2 algorithm. |
| WinnowTrainer | An implementation of the training methods of a Winnow2 on-line classifier. |
Classes for training and classifying instances. All classification techniques in MALLET are implemented as two classes: a trainer and a classifier. The trainer injests the training data and creates a classifier that holds the parameters set during training. The classifier applies those parameters to an Instance to produce a classification of the Instance.
|
||||||||||
| PREV PACKAGE NEXT PACKAGE | FRAMES NO FRAMES | |||||||||