|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Classification | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
cc.mallet.share.upenn | Utilities that currently include a command line wrapper for the maxent classifier. |
cc.mallet.types | Fundamental MALLET types, including FeatureVector, Instance, Label etc. |
Uses of Classification in cc.mallet.classify |
---|
Methods in cc.mallet.classify that return Classification | |
---|---|
Classification |
Winnow.classify(Instance instance)
Classifies an instance using Winnow's weights |
Classification |
RankMaxEnt.classify(Instance instance)
|
Classification |
PRAuxClassifier.classify(Instance instance)
|
Classification |
NaiveBayes.classify(Instance instance)
Classify an instance using NaiveBayes according to the trained data. |
Classification |
MCMaxEnt.classify(Instance instance)
|
Classification |
MaxEnt.classify(Instance instance)
|
Classification |
DecisionTree.classify(Instance instance)
|
Classification |
ConfidencePredictingClassifier.classify(Instance instance)
|
Classification |
ClassifierEnsemble.classify(Instance instance)
|
abstract Classification |
Classifier.classify(Instance instance)
|
Classification |
C45.classify(Instance instance)
|
Classification |
BalancedWinnow.classify(Instance instance)
Classifies an instance using BalancedWinnow's weights |
Classification |
BaggingClassifier.classify(Instance inst)
|
Classification |
AdaBoostM2.classify(Instance inst)
|
Classification |
AdaBoost.classify(Instance inst)
|
Classification[] |
Classifier.classify(Instance[] instances)
|
Classification |
AdaBoostM2.classify(Instance inst,
int numWeakClassifiersToUse)
Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting |
Classification |
AdaBoost.classify(Instance inst,
int numWeakClassifiersToUse)
Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting |
Classification |
Classifier.classify(java.lang.Object obj)
Pipe the object through this classifier's pipe, then classify the resulting instance. |
Methods in cc.mallet.classify that return types with arguments of type Classification | |
---|---|
java.util.ArrayList<Classification> |
Classifier.classify(InstanceList instances)
|
Methods in cc.mallet.classify with parameters of type Classification | |
---|---|
boolean |
Trial.add(Classification c)
|
void |
Trial.add(int index,
Classification c)
|
Method parameters in cc.mallet.classify with type arguments of type Classification | |
---|---|
boolean |
Trial.addAll(java.util.Collection<? extends Classification> collection)
|
boolean |
Trial.addAll(int index,
java.util.Collection<? extends Classification> collection)
|
Uses of Classification in cc.mallet.pipe |
---|
Methods in cc.mallet.pipe that return Classification | |
---|---|
Classification |
AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance)
|
Classification |
AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance,
boolean useOutOfFold)
|
Uses of Classification in cc.mallet.share.upenn |
---|
Methods in cc.mallet.share.upenn that return Classification | |
---|---|
static Classification[] |
MaxEntShell.classify(Classifier classifier,
java.util.Iterator<Instance> data)
Compute the maxent classifications for unlabeled instances given by an iterator. |
static Classification |
MaxEntShell.classify(Classifier classifier,
java.lang.String[] features)
Compute the maxent classification of an instance. |
static Classification[] |
MaxEntShell.classify(Classifier classifier,
java.lang.String[][] features)
Compute the maxent classifications of an array of instances |
Uses of Classification in cc.mallet.types |
---|
Methods in cc.mallet.types with parameters of type Classification | |
---|---|
void |
ROCData.add(Classification classification)
Adds classification results to the ROC data |
Constructors in cc.mallet.types with parameters of type Classification | |
---|---|
ExpGain(InstanceList ilist,
Classification[] classifications,
double gaussianPriorVariance)
|
|
GradientGain(InstanceList ilist,
Classification[] classifications)
|
|
KLGain(InstanceList ilist,
Classification[] classifications)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |