Uses of Class
cc.mallet.classify.Classification

Packages that use Classification
cc.mallet.classify Classes for training and classifying instances. 
cc.mallet.pipe Classes for processing arbitrary data into instances. 
cc.mallet.share.upenn Utilities that currently include a command line wrapper for the maxent classifier. 
cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc. 
 

Uses of Classification in cc.mallet.classify
 

Methods in cc.mallet.classify that return Classification
 Classification Winnow.classify(Instance instance)
          Classifies an instance using Winnow's weights
 Classification RankMaxEnt.classify(Instance instance)
           
 Classification PRAuxClassifier.classify(Instance instance)
           
 Classification NaiveBayes.classify(Instance instance)
          Classify an instance using NaiveBayes according to the trained data.
 Classification MCMaxEnt.classify(Instance instance)
           
 Classification MaxEnt.classify(Instance instance)
           
 Classification DecisionTree.classify(Instance instance)
           
 Classification ConfidencePredictingClassifier.classify(Instance instance)
           
 Classification ClassifierEnsemble.classify(Instance instance)
           
abstract  Classification Classifier.classify(Instance instance)
           
 Classification C45.classify(Instance instance)
           
 Classification BalancedWinnow.classify(Instance instance)
          Classifies an instance using BalancedWinnow's weights
 Classification BaggingClassifier.classify(Instance inst)
           
 Classification AdaBoostM2.classify(Instance inst)
           
 Classification AdaBoost.classify(Instance inst)
           
 Classification[] Classifier.classify(Instance[] instances)
           
 Classification AdaBoostM2.classify(Instance inst, int numWeakClassifiersToUse)
          Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting
 Classification AdaBoost.classify(Instance inst, int numWeakClassifiersToUse)
          Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting
 Classification Classifier.classify(java.lang.Object obj)
          Pipe the object through this classifier's pipe, then classify the resulting instance.
 

Methods in cc.mallet.classify that return types with arguments of type Classification
 java.util.ArrayList<Classification> Classifier.classify(InstanceList instances)
           
 

Methods in cc.mallet.classify with parameters of type Classification
 boolean Trial.add(Classification c)
           
 void Trial.add(int index, Classification c)
           
 

Method parameters in cc.mallet.classify with type arguments of type Classification
 boolean Trial.addAll(java.util.Collection<? extends Classification> collection)
           
 boolean Trial.addAll(int index, java.util.Collection<? extends Classification> collection)
           
 

Uses of Classification in cc.mallet.pipe
 

Methods in cc.mallet.pipe that return Classification
 Classification AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance)
           
 Classification AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance, boolean useOutOfFold)
           
 

Uses of Classification in cc.mallet.share.upenn
 

Methods in cc.mallet.share.upenn that return Classification
static Classification[] MaxEntShell.classify(Classifier classifier, java.util.Iterator<Instance> data)
          Compute the maxent classifications for unlabeled instances given by an iterator.
static Classification MaxEntShell.classify(Classifier classifier, java.lang.String[] features)
          Compute the maxent classification of an instance.
static Classification[] MaxEntShell.classify(Classifier classifier, java.lang.String[][] features)
          Compute the maxent classifications of an array of instances
 

Uses of Classification in cc.mallet.types
 

Methods in cc.mallet.types with parameters of type Classification
 void ROCData.add(Classification classification)
          Adds classification results to the ROC data
 

Constructors in cc.mallet.types with parameters of type Classification
ExpGain(InstanceList ilist, Classification[] classifications, double gaussianPriorVariance)
           
GradientGain(InstanceList ilist, Classification[] classifications)
           
KLGain(InstanceList ilist, Classification[] classifications)