Uses of Class
cc.mallet.classify.Classifier

Packages that use Classifier
cc.mallet.classify Classes for training and classifying instances. 
cc.mallet.classify.evaluate Classes for computing and displaying the quaility of a classification trial, including accuracy, precision, and confusion matrix. 
cc.mallet.cluster.neighbor_evaluator   
cc.mallet.pipe Classes for processing arbitrary data into instances. 
cc.mallet.share.upenn Utilities that currently include a command line wrapper for the maxent classifier. 
 

Uses of Classifier in cc.mallet.classify
 

Classes in cc.mallet.classify with type parameters of type Classifier
 class ClassifierTrainer<C extends Classifier>
          Each ClassifierTrainer trains one Classifier based on various interfaces for consuming training data.
static interface ClassifierTrainer.ByActiveLearning<C extends Classifier>
          For active learning, in which this trainer will select certain instances and request that the Labeler instance label them.
static interface ClassifierTrainer.ByIncrements<C extends Classifier>
          For various kinds of online learning by batches, where training instances are presented, consumed for learning immediately.
static interface ClassifierTrainer.ByInstanceIncrements<C extends Classifier>
          For online learning that can operate on one instance at a time.
static interface ClassifierTrainer.ByOptimization<C extends Classifier>
           
static class ClassifierTrainer.Factory<CT extends ClassifierTrainer<? extends Classifier>>
          Instances of a Factory know how to create new ClassifierTrainers to apply to new Classifiers.
 

Subclasses of Classifier in cc.mallet.classify
 class AdaBoost
          AdaBoost Robert E.
 class AdaBoostM2
          AdaBoostM2
 class BaggingClassifier
           
 class BalancedWinnow
          Classification methods of BalancedWinnow algorithm.
 class C45
          A C4.5 Decision Tree classifier.
 class ClassifierEnsemble
          Classifer for an ensemble of classifers, combined with learned weights.
 class ConfidencePredictingClassifier
           
 class DecisionTree
          Decision Tree classifier.
 class MaxEnt
          Maximum Entropy (AKA Multivariate Logistic Regression) classifier.
 class MCMaxEnt
          Maximum Entropy classifier.
 class NaiveBayes
          A classifier that classifies instances according to the NaiveBayes method.
 class PRAuxClassifier
          Auxiliary model (q) for E-step/I-projection in PR training.
 class RankMaxEnt
          Rank Maximum Entropy classifier.
 class Winnow
          Classification methods of Winnow2 algorithm.
 

Methods in cc.mallet.classify that return Classifier
 Classifier Trial.getClassifier()
           
 Classifier FeatureSelectingClassifierTrainer.getClassifier()
           
 Classifier Classification.getClassifier()
           
 Classifier FeatureSelectingClassifierTrainer.train(InstanceList trainingSet)
           
 

Methods in cc.mallet.classify with parameters of type Classifier
 NaiveBayesTrainer NaiveBayesTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
           
 DecisionTreeTrainer DecisionTreeTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
           
abstract  CT ClassifierTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
           
 

Constructors in cc.mallet.classify with parameters of type Classifier
AdaBoost(Pipe instancePipe, Classifier[] weakClassifiers, double[] alphas)
           
AdaBoostM2(Pipe instancePipe, Classifier[] weakClassifiers, double[] alphas)
           
BaggingClassifier(Pipe instancePipe, Classifier[] baggedClassifiers)
           
Classification(Instance instance, Classifier classifier, Labeling labeling)
           
ClassifierEnsemble(Classifier[] classifiers, double[] weights)
           
ClassifierEnsembleTrainer(Classifier[] classifiers)
           
ConfidencePredictingClassifier(Classifier underlyingClassifier, Classifier confidencePredictingClassifier)
           
Trial(Classifier c, InstanceList ilist)
           
 

Uses of Classifier in cc.mallet.classify.evaluate
 

Constructors in cc.mallet.classify.evaluate with parameters of type Classifier
AccuracyCoverage(Classifier C, InstanceList ilist, int numBuckets, java.lang.String title)
           
AccuracyCoverage(Classifier C, InstanceList ilist, java.lang.String title)
           
 

Uses of Classifier in cc.mallet.cluster.neighbor_evaluator
 

Methods in cc.mallet.cluster.neighbor_evaluator that return Classifier
 Classifier ClassifyingNeighborEvaluator.getClassifier()
           
 

Constructors in cc.mallet.cluster.neighbor_evaluator with parameters of type Classifier
ClassifyingNeighborEvaluator(Classifier classifier, java.lang.String scoringLabel)
           
MedoidEvaluator(Classifier classifier, java.lang.String scoringLabel)
           
MedoidEvaluator(Classifier classifier, java.lang.String scoringLabel, boolean singleLink, boolean mergeFirst)
           
PairwiseEvaluator(Classifier classifier, java.lang.String scoringLabel, PairwiseEvaluator.CombiningStrategy combiningStrategy, boolean mergeFirst)
           
RankingNeighborEvaluator(Classifier classifier)
           
 

Uses of Classifier in cc.mallet.pipe
 

Subclasses of Classifier in cc.mallet.pipe
static class AddClassifierTokenPredictions.TokenClassifiers
          This inner class represents the trained token classifiers.
 

Uses of Classifier in cc.mallet.share.upenn
 

Methods in cc.mallet.share.upenn that return Classifier
static Classifier MaxEntShell.load(java.io.File modelFile)
          Load a classifier from a file.
static Classifier MaxEntShell.train(java.util.Iterator<Instance> data, double var, java.io.File save)
          Train a maxent classifier.
static Classifier MaxEntShell.train(java.lang.String[][] features, java.lang.String[] labels, double var, java.io.File save)
          Train a maxent classifier.
 

Methods in cc.mallet.share.upenn with parameters of type Classifier
static Classification[] MaxEntShell.classify(Classifier classifier, java.util.Iterator<Instance> data)
          Compute the maxent classifications for unlabeled instances given by an iterator.
static Classification MaxEntShell.classify(Classifier classifier, java.lang.String[] features)
          Compute the maxent classification of an instance.
static Classification[] MaxEntShell.classify(Classifier classifier, java.lang.String[][] features)
          Compute the maxent classifications of an array of instances
static double MaxEntShell.test(Classifier classifier, java.util.Iterator<Instance> data)
          Test a maxent classifier.
static double MaxEntShell.test(Classifier classifier, java.lang.String[][] features, java.lang.String[] labels)
          Test a maxent classifier.