|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Classifier | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.classify.evaluate | Classes for computing and displaying the quaility of a classification trial, including accuracy, precision, and confusion matrix. |
cc.mallet.cluster.neighbor_evaluator | |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
cc.mallet.share.upenn | Utilities that currently include a command line wrapper for the maxent classifier. |
Uses of Classifier in cc.mallet.classify |
---|
Classes in cc.mallet.classify with type parameters of type Classifier | |
---|---|
class |
ClassifierTrainer<C extends Classifier>
Each ClassifierTrainer trains one Classifier based on various interfaces for consuming training data. |
static interface |
ClassifierTrainer.ByActiveLearning<C extends Classifier>
For active learning, in which this trainer will select certain instances and request that the Labeler instance label them. |
static interface |
ClassifierTrainer.ByIncrements<C extends Classifier>
For various kinds of online learning by batches, where training instances are presented, consumed for learning immediately. |
static interface |
ClassifierTrainer.ByInstanceIncrements<C extends Classifier>
For online learning that can operate on one instance at a time. |
static interface |
ClassifierTrainer.ByOptimization<C extends Classifier>
|
static class |
ClassifierTrainer.Factory<CT extends ClassifierTrainer<? extends Classifier>>
Instances of a Factory know how to create new ClassifierTrainers to apply to new Classifiers. |
Subclasses of Classifier in cc.mallet.classify | |
---|---|
class |
AdaBoost
AdaBoost Robert E. |
class |
AdaBoostM2
AdaBoostM2 |
class |
BaggingClassifier
|
class |
BalancedWinnow
Classification methods of BalancedWinnow algorithm. |
class |
C45
A C4.5 Decision Tree classifier. |
class |
ClassifierEnsemble
Classifer for an ensemble of classifers, combined with learned weights. |
class |
ConfidencePredictingClassifier
|
class |
DecisionTree
Decision Tree classifier. |
class |
MaxEnt
Maximum Entropy (AKA Multivariate Logistic Regression) classifier. |
class |
MCMaxEnt
Maximum Entropy classifier. |
class |
NaiveBayes
A classifier that classifies instances according to the NaiveBayes method. |
class |
PRAuxClassifier
Auxiliary model (q) for E-step/I-projection in PR training. |
class |
RankMaxEnt
Rank Maximum Entropy classifier. |
class |
Winnow
Classification methods of Winnow2 algorithm. |
Methods in cc.mallet.classify that return Classifier | |
---|---|
Classifier |
Trial.getClassifier()
|
Classifier |
FeatureSelectingClassifierTrainer.getClassifier()
|
Classifier |
Classification.getClassifier()
|
Classifier |
FeatureSelectingClassifierTrainer.train(InstanceList trainingSet)
|
Methods in cc.mallet.classify with parameters of type Classifier | |
---|---|
NaiveBayesTrainer |
NaiveBayesTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
|
DecisionTreeTrainer |
DecisionTreeTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
|
abstract CT |
ClassifierTrainer.Factory.newClassifierTrainer(Classifier initialClassifier)
|
Constructors in cc.mallet.classify with parameters of type Classifier | |
---|---|
AdaBoost(Pipe instancePipe,
Classifier[] weakClassifiers,
double[] alphas)
|
|
AdaBoostM2(Pipe instancePipe,
Classifier[] weakClassifiers,
double[] alphas)
|
|
BaggingClassifier(Pipe instancePipe,
Classifier[] baggedClassifiers)
|
|
Classification(Instance instance,
Classifier classifier,
Labeling labeling)
|
|
ClassifierEnsemble(Classifier[] classifiers,
double[] weights)
|
|
ClassifierEnsembleTrainer(Classifier[] classifiers)
|
|
ConfidencePredictingClassifier(Classifier underlyingClassifier,
Classifier confidencePredictingClassifier)
|
|
Trial(Classifier c,
InstanceList ilist)
|
Uses of Classifier in cc.mallet.classify.evaluate |
---|
Constructors in cc.mallet.classify.evaluate with parameters of type Classifier | |
---|---|
AccuracyCoverage(Classifier C,
InstanceList ilist,
int numBuckets,
java.lang.String title)
|
|
AccuracyCoverage(Classifier C,
InstanceList ilist,
java.lang.String title)
|
Uses of Classifier in cc.mallet.cluster.neighbor_evaluator |
---|
Methods in cc.mallet.cluster.neighbor_evaluator that return Classifier | |
---|---|
Classifier |
ClassifyingNeighborEvaluator.getClassifier()
|
Constructors in cc.mallet.cluster.neighbor_evaluator with parameters of type Classifier | |
---|---|
ClassifyingNeighborEvaluator(Classifier classifier,
java.lang.String scoringLabel)
|
|
MedoidEvaluator(Classifier classifier,
java.lang.String scoringLabel)
|
|
MedoidEvaluator(Classifier classifier,
java.lang.String scoringLabel,
boolean singleLink,
boolean mergeFirst)
|
|
PairwiseEvaluator(Classifier classifier,
java.lang.String scoringLabel,
PairwiseEvaluator.CombiningStrategy combiningStrategy,
boolean mergeFirst)
|
|
RankingNeighborEvaluator(Classifier classifier)
|
Uses of Classifier in cc.mallet.pipe |
---|
Subclasses of Classifier in cc.mallet.pipe | |
---|---|
static class |
AddClassifierTokenPredictions.TokenClassifiers
This inner class represents the trained token classifiers. |
Uses of Classifier in cc.mallet.share.upenn |
---|
Methods in cc.mallet.share.upenn that return Classifier | |
---|---|
static Classifier |
MaxEntShell.load(java.io.File modelFile)
Load a classifier from a file. |
static Classifier |
MaxEntShell.train(java.util.Iterator<Instance> data,
double var,
java.io.File save)
Train a maxent classifier. |
static Classifier |
MaxEntShell.train(java.lang.String[][] features,
java.lang.String[] labels,
double var,
java.io.File save)
Train a maxent classifier. |
Methods in cc.mallet.share.upenn with parameters of type Classifier | |
---|---|
static Classification[] |
MaxEntShell.classify(Classifier classifier,
java.util.Iterator<Instance> data)
Compute the maxent classifications for unlabeled instances given by an iterator. |
static Classification |
MaxEntShell.classify(Classifier classifier,
java.lang.String[] features)
Compute the maxent classification of an instance. |
static Classification[] |
MaxEntShell.classify(Classifier classifier,
java.lang.String[][] features)
Compute the maxent classifications of an array of instances |
static double |
MaxEntShell.test(Classifier classifier,
java.util.Iterator<Instance> data)
Test a maxent classifier. |
static double |
MaxEntShell.test(Classifier classifier,
java.lang.String[][] features,
java.lang.String[] labels)
Test a maxent classifier. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |