|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Optimizable.ByGradientValue | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.fst | Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.fst.semi_supervised | |
cc.mallet.fst.semi_supervised.pr | |
cc.mallet.grmm.learning | |
cc.mallet.grmm.util | |
cc.mallet.optimize | Classes for finding the maximum of a function. |
cc.mallet.optimize.tests | JUnit tests for maximize. |
cc.mallet.topics |
Uses of Optimizable.ByGradientValue in cc.mallet.classify |
---|
Classes in cc.mallet.classify that implement Optimizable.ByGradientValue | |
---|---|
class |
MaxEntOptimizableByGE
|
class |
MaxEntOptimizableByLabelDistribution
|
class |
MaxEntOptimizableByLabelLikelihood
|
class |
PRAuxClassifierOptimizable
Optimizable for training auxiliary model (q) for E-step/I-projection in PR training. |
Methods in cc.mallet.classify that return Optimizable.ByGradientValue | |
---|---|
Optimizable.ByGradientValue |
RankMaxEntTrainer.getMaximizableTrainer(InstanceList ilist)
|
Optimizable.ByGradientValue |
MCMaxEntTrainer.getMaximizableTrainer(InstanceList ilist)
|
Optimizable.ByGradientValue |
MaxEntGETrainer.getOptimizable(InstanceList trainingList)
|
Optimizable.ByGradientValue |
MaxEntGERangeTrainer.getOptimizable(InstanceList trainingList)
|
Uses of Optimizable.ByGradientValue in cc.mallet.fst |
---|
Classes in cc.mallet.fst that implement Optimizable.ByGradientValue | |
---|---|
class |
CRFOptimizableByGradientValues
A CRF objective function that is the sum of multiple objective functions that implement Optimizable.ByGradientValue. |
class |
CRFOptimizableByLabelLikelihood
An objective function for CRFs that is the label likelihood plus a Gaussian or hyperbolic prior on parameters. |
class |
CRFTrainerByValueGradients.OptimizableCRF
An optimizable CRF that contains a collection of objective functions. |
class |
MEMMTrainer.MEMMOptimizableByLabelLikelihood
Represents the terms in the objective function. |
class |
ThreadedOptimizable
An adaptor for optimizables based on batch values/gradients. |
Methods in cc.mallet.fst that return Optimizable.ByGradientValue | |
---|---|
Optimizable.ByGradientValue[] |
CRFTrainerByValueGradients.getOptimizableByGradientValueObjects()
|
Optimizable.ByGradientValue |
CRFOptimizableByLabelLikelihood.Factory.newCRFOptimizable(CRF crf,
InstanceList trainingData)
|
Constructors in cc.mallet.fst with parameters of type Optimizable.ByGradientValue | |
---|---|
CRFOptimizableByGradientValues(CRF crf,
Optimizable.ByGradientValue[] opts)
|
|
CRFTrainerByValueGradients(CRF crf,
Optimizable.ByGradientValue[] optimizableByValueGradientObjects)
|
Uses of Optimizable.ByGradientValue in cc.mallet.fst.semi_supervised |
---|
Classes in cc.mallet.fst.semi_supervised that implement Optimizable.ByGradientValue | |
---|---|
class |
CRFOptimizableByEntropyRegularization
A CRF objective function that is the entropy of the CRF's predictions on unlabeled data. |
class |
CRFOptimizableByGE
Optimizable for CRF using Generalized Expectation constraints that consider either a single label or a pair of labels of a linear chain CRF. |
Methods in cc.mallet.fst.semi_supervised that return Optimizable.ByGradientValue | |
---|---|
Optimizable.ByGradientValue |
CRFTrainerByGE.getOptimizable(InstanceList unlabeled)
|
Methods in cc.mallet.fst.semi_supervised with parameters of type Optimizable.ByGradientValue | |
---|---|
Optimizer |
CRFTrainerByGE.getOptimizer(Optimizable.ByGradientValue optimizable)
|
Uses of Optimizable.ByGradientValue in cc.mallet.fst.semi_supervised.pr |
---|
Classes in cc.mallet.fst.semi_supervised.pr that implement Optimizable.ByGradientValue | |
---|---|
class |
ConstraintsOptimizableByPR
Optimizable for E-step/I-projection in Posterior Regularization (PR). |
class |
CRFOptimizableByKL
M-step/M-projection for PR. |
Uses of Optimizable.ByGradientValue in cc.mallet.grmm.learning |
---|
Classes in cc.mallet.grmm.learning that implement Optimizable.ByGradientValue | |
---|---|
class |
ACRF.MaximizableACRF
|
static class |
PiecewiseACRFTrainer.Maxable
|
class |
PseudolikelihoodACRFTrainer.Maxable
|
class |
PwplACRFTrainer.Maxable
|
Methods in cc.mallet.grmm.learning that return Optimizable.ByGradientValue | |
---|---|
Optimizable.ByGradientValue |
PwplACRFTrainer.createOptimizable(ACRF acrf,
InstanceList training)
|
Optimizable.ByGradientValue |
PseudolikelihoodACRFTrainer.createOptimizable(ACRF acrf,
InstanceList training)
|
Optimizable.ByGradientValue |
PiecewiseACRFTrainer.createOptimizable(ACRF acrf,
InstanceList training)
|
protected Optimizable.ByGradientValue |
DefaultAcrfTrainer.createOptimizable(ACRF acrf,
InstanceList trainingList)
|
Optimizable.ByGradientValue |
ACRF.getMaximizable(InstanceList ilst)
|
Methods in cc.mallet.grmm.learning with parameters of type Optimizable.ByGradientValue | |
---|---|
boolean |
PwplACRFTrainer.train(ACRF acrf,
InstanceList trainingList,
InstanceList validationList,
InstanceList testSet,
ACRFEvaluator eval,
int numIter,
Optimizable.ByGradientValue macrf)
|
boolean |
DefaultAcrfTrainer.train(ACRF acrf,
InstanceList trainingList,
InstanceList validationList,
InstanceList testSet,
ACRFEvaluator eval,
int numIter,
Optimizable.ByGradientValue macrf)
|
boolean |
ACRFTrainer.train(ACRF acrf,
InstanceList training,
InstanceList validation,
InstanceList testing,
ACRFEvaluator eval,
int numIter,
Optimizable.ByGradientValue macrf)
|
Uses of Optimizable.ByGradientValue in cc.mallet.grmm.util |
---|
Classes in cc.mallet.grmm.util that implement Optimizable.ByGradientValue | |
---|---|
static class |
CachingOptimizable.ByGradient
|
Uses of Optimizable.ByGradientValue in cc.mallet.optimize |
---|
Subinterfaces of Optimizable.ByGradientValue in cc.mallet.optimize | |
---|---|
static interface |
Optimizable.ByHessian
|
Classes in cc.mallet.optimize that implement Optimizable.ByGradientValue | |
---|---|
class |
OptimizableCollection.ByGradientValue
|
Methods in cc.mallet.optimize with parameters of type Optimizable.ByGradientValue | |
---|---|
boolean |
OptimizerEvaluator.ByGradient.evaluate(Optimizable.ByGradientValue maxable,
int iter)
Performs some operation at the end of each iteration of a maximizer. |
Constructors in cc.mallet.optimize with parameters of type Optimizable.ByGradientValue | |
---|---|
BackTrackLineSearch(Optimizable.ByGradientValue optimizable)
|
|
ConjugateGradient(Optimizable.ByGradientValue function)
|
|
ConjugateGradient(Optimizable.ByGradientValue function,
double initialStepSize)
|
|
GradientAscent(Optimizable.ByGradientValue function)
|
|
GradientBracketLineOptimizer(Optimizable.ByGradientValue function)
|
|
LimitedMemoryBFGS(Optimizable.ByGradientValue function)
|
|
OptimizableCollection.ByGradientValue(Optimizable.ByGradientValue... ops)
|
|
OrthantWiseLimitedMemoryBFGS(Optimizable.ByGradientValue function)
|
|
OrthantWiseLimitedMemoryBFGS(Optimizable.ByGradientValue function,
double l1wt)
|
Uses of Optimizable.ByGradientValue in cc.mallet.optimize.tests |
---|
Methods in cc.mallet.optimize.tests with parameters of type Optimizable.ByGradientValue | |
---|---|
static boolean |
TestOptimizable.testValueAndGradient(Optimizable.ByGradientValue maxable)
Tests that getValue and getValueGradient are consistent. |
static double |
TestOptimizable.testValueAndGradientCurrentParameters(Optimizable.ByGradientValue maxable)
Tests that the value and gradient function are consistent at the current parameters. |
static double |
TestOptimizable.testValueAndGradientInDirection(Optimizable.ByGradientValue maxable,
double[] direction)
|
static boolean |
TestOptimizable.testValueAndGradientRandomParameters(Optimizable.ByGradientValue maxable,
java.util.Random r)
Tests that getValue and getValueGradient are consistent at a random parameter setting. |
Uses of Optimizable.ByGradientValue in cc.mallet.topics |
---|
Classes in cc.mallet.topics that implement Optimizable.ByGradientValue | |
---|---|
class |
DMROptimizable
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |