Uses of Interface
cc.mallet.optimize.Optimizable.ByGradientValue

Packages that use Optimizable.ByGradientValue
cc.mallet.classify Classes for training and classifying instances. 
cc.mallet.fst Transducers, including Conditional Random Fields (CRFs). 
cc.mallet.fst.semi_supervised   
cc.mallet.fst.semi_supervised.pr   
cc.mallet.grmm.learning   
cc.mallet.grmm.util   
cc.mallet.optimize Classes for finding the maximum of a function. 
cc.mallet.optimize.tests JUnit tests for maximize. 
cc.mallet.topics   
 

Uses of Optimizable.ByGradientValue in cc.mallet.classify
 

Classes in cc.mallet.classify that implement Optimizable.ByGradientValue
 class MaxEntOptimizableByGE
           
 class MaxEntOptimizableByLabelDistribution
           
 class MaxEntOptimizableByLabelLikelihood
           
 class PRAuxClassifierOptimizable
          Optimizable for training auxiliary model (q) for E-step/I-projection in PR training.
 

Methods in cc.mallet.classify that return Optimizable.ByGradientValue
 Optimizable.ByGradientValue RankMaxEntTrainer.getMaximizableTrainer(InstanceList ilist)
           
 Optimizable.ByGradientValue MCMaxEntTrainer.getMaximizableTrainer(InstanceList ilist)
           
 Optimizable.ByGradientValue MaxEntGETrainer.getOptimizable(InstanceList trainingList)
           
 Optimizable.ByGradientValue MaxEntGERangeTrainer.getOptimizable(InstanceList trainingList)
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.fst
 

Classes in cc.mallet.fst that implement Optimizable.ByGradientValue
 class CRFOptimizableByGradientValues
          A CRF objective function that is the sum of multiple objective functions that implement Optimizable.ByGradientValue.
 class CRFOptimizableByLabelLikelihood
          An objective function for CRFs that is the label likelihood plus a Gaussian or hyperbolic prior on parameters.
 class CRFTrainerByValueGradients.OptimizableCRF
          An optimizable CRF that contains a collection of objective functions.
 class MEMMTrainer.MEMMOptimizableByLabelLikelihood
          Represents the terms in the objective function.
 class ThreadedOptimizable
          An adaptor for optimizables based on batch values/gradients.
 

Methods in cc.mallet.fst that return Optimizable.ByGradientValue
 Optimizable.ByGradientValue[] CRFTrainerByValueGradients.getOptimizableByGradientValueObjects()
           
 Optimizable.ByGradientValue CRFOptimizableByLabelLikelihood.Factory.newCRFOptimizable(CRF crf, InstanceList trainingData)
           
 

Constructors in cc.mallet.fst with parameters of type Optimizable.ByGradientValue
CRFOptimizableByGradientValues(CRF crf, Optimizable.ByGradientValue[] opts)
           
CRFTrainerByValueGradients(CRF crf, Optimizable.ByGradientValue[] optimizableByValueGradientObjects)
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.fst.semi_supervised
 

Classes in cc.mallet.fst.semi_supervised that implement Optimizable.ByGradientValue
 class CRFOptimizableByEntropyRegularization
          A CRF objective function that is the entropy of the CRF's predictions on unlabeled data.
 class CRFOptimizableByGE
          Optimizable for CRF using Generalized Expectation constraints that consider either a single label or a pair of labels of a linear chain CRF.
 

Methods in cc.mallet.fst.semi_supervised that return Optimizable.ByGradientValue
 Optimizable.ByGradientValue CRFTrainerByGE.getOptimizable(InstanceList unlabeled)
           
 

Methods in cc.mallet.fst.semi_supervised with parameters of type Optimizable.ByGradientValue
 Optimizer CRFTrainerByGE.getOptimizer(Optimizable.ByGradientValue optimizable)
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.fst.semi_supervised.pr
 

Classes in cc.mallet.fst.semi_supervised.pr that implement Optimizable.ByGradientValue
 class ConstraintsOptimizableByPR
          Optimizable for E-step/I-projection in Posterior Regularization (PR).
 class CRFOptimizableByKL
          M-step/M-projection for PR.
 

Uses of Optimizable.ByGradientValue in cc.mallet.grmm.learning
 

Classes in cc.mallet.grmm.learning that implement Optimizable.ByGradientValue
 class ACRF.MaximizableACRF
           
static class PiecewiseACRFTrainer.Maxable
           
 class PseudolikelihoodACRFTrainer.Maxable
           
 class PwplACRFTrainer.Maxable
           
 

Methods in cc.mallet.grmm.learning that return Optimizable.ByGradientValue
 Optimizable.ByGradientValue PwplACRFTrainer.createOptimizable(ACRF acrf, InstanceList training)
           
 Optimizable.ByGradientValue PseudolikelihoodACRFTrainer.createOptimizable(ACRF acrf, InstanceList training)
           
 Optimizable.ByGradientValue PiecewiseACRFTrainer.createOptimizable(ACRF acrf, InstanceList training)
           
protected  Optimizable.ByGradientValue DefaultAcrfTrainer.createOptimizable(ACRF acrf, InstanceList trainingList)
           
 Optimizable.ByGradientValue ACRF.getMaximizable(InstanceList ilst)
           
 

Methods in cc.mallet.grmm.learning with parameters of type Optimizable.ByGradientValue
 boolean PwplACRFTrainer.train(ACRF acrf, InstanceList trainingList, InstanceList validationList, InstanceList testSet, ACRFEvaluator eval, int numIter, Optimizable.ByGradientValue macrf)
           
 boolean DefaultAcrfTrainer.train(ACRF acrf, InstanceList trainingList, InstanceList validationList, InstanceList testSet, ACRFEvaluator eval, int numIter, Optimizable.ByGradientValue macrf)
           
 boolean ACRFTrainer.train(ACRF acrf, InstanceList training, InstanceList validation, InstanceList testing, ACRFEvaluator eval, int numIter, Optimizable.ByGradientValue macrf)
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.grmm.util
 

Classes in cc.mallet.grmm.util that implement Optimizable.ByGradientValue
static class CachingOptimizable.ByGradient
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.optimize
 

Subinterfaces of Optimizable.ByGradientValue in cc.mallet.optimize
static interface Optimizable.ByHessian
           
 

Classes in cc.mallet.optimize that implement Optimizable.ByGradientValue
 class OptimizableCollection.ByGradientValue
           
 

Methods in cc.mallet.optimize with parameters of type Optimizable.ByGradientValue
 boolean OptimizerEvaluator.ByGradient.evaluate(Optimizable.ByGradientValue maxable, int iter)
          Performs some operation at the end of each iteration of a maximizer.
 

Constructors in cc.mallet.optimize with parameters of type Optimizable.ByGradientValue
BackTrackLineSearch(Optimizable.ByGradientValue optimizable)
           
ConjugateGradient(Optimizable.ByGradientValue function)
           
ConjugateGradient(Optimizable.ByGradientValue function, double initialStepSize)
           
GradientAscent(Optimizable.ByGradientValue function)
           
GradientBracketLineOptimizer(Optimizable.ByGradientValue function)
           
LimitedMemoryBFGS(Optimizable.ByGradientValue function)
           
OptimizableCollection.ByGradientValue(Optimizable.ByGradientValue... ops)
           
OrthantWiseLimitedMemoryBFGS(Optimizable.ByGradientValue function)
           
OrthantWiseLimitedMemoryBFGS(Optimizable.ByGradientValue function, double l1wt)
           
 

Uses of Optimizable.ByGradientValue in cc.mallet.optimize.tests
 

Methods in cc.mallet.optimize.tests with parameters of type Optimizable.ByGradientValue
static boolean TestOptimizable.testValueAndGradient(Optimizable.ByGradientValue maxable)
          Tests that getValue and getValueGradient are consistent.
static double TestOptimizable.testValueAndGradientCurrentParameters(Optimizable.ByGradientValue maxable)
          Tests that the value and gradient function are consistent at the current parameters.
static double TestOptimizable.testValueAndGradientInDirection(Optimizable.ByGradientValue maxable, double[] direction)
           
static boolean TestOptimizable.testValueAndGradientRandomParameters(Optimizable.ByGradientValue maxable, java.util.Random r)
          Tests that getValue and getValueGradient are consistent at a random parameter setting.
 

Uses of Optimizable.ByGradientValue in cc.mallet.topics
 

Classes in cc.mallet.topics that implement Optimizable.ByGradientValue
 class DMROptimizable