Uses of Class
cc.mallet.types.Alphabet

Packages that use Alphabet
cc.mallet.classify Classes for training and classifying instances. 
cc.mallet.classify.tui Command line programs for document classification. 
cc.mallet.cluster Unsupervised clustering of Instance objects within an InstanceList
cc.mallet.cluster.tui   
cc.mallet.extract Unimplemented. 
cc.mallet.fst Transducers, including Conditional Random Fields (CRFs). 
cc.mallet.fst.semi_supervised   
cc.mallet.grmm.learning   
cc.mallet.grmm.learning.extract   
cc.mallet.grmm.util   
cc.mallet.pipe Classes for processing arbitrary data into instances. 
cc.mallet.pipe.iterator Classes that generate instances from different kinds of input or data structures. 
cc.mallet.topics   
cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc. 
cc.mallet.util Miscellaneous utilities including command line processing, math functions, lexing, logging. 
 

Uses of Alphabet in cc.mallet.classify
 

Methods in cc.mallet.classify that return Alphabet
 Alphabet NaiveBayesTrainer.getAlphabet()
           
 Alphabet Classifier.getAlphabet()
           
 Alphabet[] NaiveBayesTrainer.getAlphabets()
           
 Alphabet[] Classifier.getAlphabets()
           
 

Methods in cc.mallet.classify with parameters of type Alphabet
static java.util.ArrayList<java.lang.Integer> FeatureConstraintUtil.selectTopLDAFeatures(int numSelFeatures, ParallelTopicModel lda, Alphabet alphabet)
          Select top features in LDA topics.
 

Uses of Alphabet in cc.mallet.classify.tui
 

Methods in cc.mallet.classify.tui with parameters of type Alphabet
static java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.Integer>> Vectors2FeatureConstraints.readFeaturesAndLabelsFromFile(java.io.File file, Alphabet dataAlphabet, Alphabet targetAlphabet)
           
 

Uses of Alphabet in cc.mallet.cluster
 

Methods in cc.mallet.cluster that return Alphabet
 Alphabet Record.fieldAlphabet()
           
 Alphabet Record.valueAlphabet()
           
 

Constructors in cc.mallet.cluster with parameters of type Alphabet
Record(Alphabet fieldAlph, Alphabet valueAlph)
           
Record(Alphabet fieldAlph, Alphabet valueAlph, java.lang.String[][] vals)
           
 

Uses of Alphabet in cc.mallet.cluster.tui
 

Methods in cc.mallet.cluster.tui with parameters of type Alphabet
static int[] Clusterings2Clusterer.string2ints(java.lang.String[] ss, Alphabet alph)
           
 

Uses of Alphabet in cc.mallet.extract
 

Methods in cc.mallet.extract that return Alphabet
 Alphabet Extractor.getInputAlphabet()
          Returns an alphabet of the features used by the extractor.
 Alphabet CRFExtractor.getInputAlphabet()
           
 

Uses of Alphabet in cc.mallet.fst
 

Fields in cc.mallet.fst declared as Alphabet
protected  Alphabet CRF.inputAlphabet
           
protected  Alphabet CRF.outputAlphabet
           
 Alphabet CRF.Factors.weightAlphabet
           
 

Methods in cc.mallet.fst that return Alphabet
 Alphabet HMM.getInputAlphabet()
           
 Alphabet FeatureTransducer.getInputAlphabet()
           
 Alphabet CRF.getInputAlphabet()
           
 Alphabet HMM.getOutputAlphabet()
           
 Alphabet FeatureTransducer.getOutputAlphabet()
           
 Alphabet CRF.getOutputAlphabet()
           
 

Constructors in cc.mallet.fst with parameters of type Alphabet
CRF(Alphabet inputAlphabet, Alphabet outputAlphabet)
           
FeatureTransducer(Alphabet dictionary)
           
FeatureTransducer(Alphabet inputAlphabet, Alphabet outputAlphabet)
           
HMM(Alphabet inputAlphabet, Alphabet outputAlphabet)
           
MEMM(Alphabet inputAlphabet, Alphabet outputAlphabet)
           
 

Uses of Alphabet in cc.mallet.fst.semi_supervised
 

Methods in cc.mallet.fst.semi_supervised that return Alphabet
 Alphabet StateLabelMap.getLabelAlphabet()
          Returns the label (target) alphabet.
 Alphabet StateLabelMap.getStateAlphabet()
          Returns the state alphabet.
 

Constructors in cc.mallet.fst.semi_supervised with parameters of type Alphabet
StateLabelMap(Alphabet labelAlphabet, boolean isOneToOneMap)
           
StateLabelMap(Alphabet labelAlphabet, boolean isOneToOneMap, int startStateIndex)
          Initializes the state and label maps.
 

Uses of Alphabet in cc.mallet.grmm.learning
 

Fields in cc.mallet.grmm.learning declared as Alphabet
 Alphabet DefaultAcrfTrainer.TestResults.alphabet
           
 

Methods in cc.mallet.grmm.learning that return Alphabet
 Alphabet ACRF.getInputAlphabet()
           
 

Uses of Alphabet in cc.mallet.grmm.learning.extract
 

Methods in cc.mallet.grmm.learning.extract that return Alphabet
 Alphabet ACRFExtractor.getInputAlphabet()
           
 

Uses of Alphabet in cc.mallet.grmm.util
 

Methods in cc.mallet.grmm.util that return Alphabet
 Alphabet LabelsAssignment.getAlphabet()
           
 Alphabet[] LabelsAssignment.getAlphabets()
           
 

Uses of Alphabet in cc.mallet.pipe
 

Methods in cc.mallet.pipe that return Alphabet
 Alphabet Pipe.getAlphabet()
           
 Alphabet[] Pipe.getAlphabets()
           
 Alphabet TokenSequence2FeatureSequenceWithBigrams.getBigramAlphabet()
           
 Alphabet Pipe.getDataAlphabet()
           
 Alphabet AddClassifierTokenPredictions.getDataAlphabet()
           
 Alphabet FeatureCountPipe.getPrunedAlphabet(int minimumCount)
          Returns a new alphabet that contains only features at or above the specified limit.
 Alphabet Pipe.getTargetAlphabet()
           
 

Methods in cc.mallet.pipe with parameters of type Alphabet
 AugmentableFeatureVectorAddConjunctions AugmentableFeatureVectorAddConjunctions.addConjunction(java.lang.String name, Alphabet v, int[] features, boolean[] negations)
           
protected  void Pipe.preceedingPipeDataAlphabetNotification(Alphabet a)
           
protected  void Pipe.preceedingPipeTargetAlphabetNotification(Alphabet a)
           
 void Pipe.setDataAlphabet(Alphabet dDict)
           
 void Pipe.setOrCheckDataAlphabet(Alphabet a)
           
 void Pipe.setOrCheckTargetAlphabet(Alphabet a)
           
 void Pipe.setTargetAlphabet(Alphabet tDict)
           
 

Constructors in cc.mallet.pipe with parameters of type Alphabet
Array2FeatureVector(Alphabet dataAlphabet, Alphabet targetAlphabet)
          Construct a pipe based on the dimensions of the data and target.
FeatureCountPipe(Alphabet dataAlphabet, Alphabet targetAlphabet)
           
FeatureDocFreqPipe(Alphabet dataAlphabet, Alphabet targetAlphabet)
           
FeatureValueString2FeatureVector(Alphabet dataDict)
           
Noop(Alphabet dataDict, Alphabet targetDict)
          Pass through input without change, but force the creation of Alphabet's, so it can be shared by future DictionariedPipe's.
Pipe(Alphabet dataDict, Alphabet targetDict)
          Construct pipe with data and target dictionaries.
StringList2FeatureSequence(Alphabet dataDict)
           
Target2Label(Alphabet dataAlphabet, LabelAlphabet labelAlphabet)
           
Token2FeatureVector(Alphabet dataDict)
           
Token2FeatureVector(Alphabet dataDict, boolean binary, boolean augmentable)
           
TokenSequence2FeatureSequence(Alphabet dataDict)
           
TokenSequence2FeatureSequenceWithBigrams(Alphabet dataDict)
           
TokenSequence2FeatureSequenceWithBigrams(Alphabet dataDict, Alphabet bigramAlphabet)
           
TokenSequence2FeatureVectorSequence(Alphabet dataDict)
           
TokenSequence2FeatureVectorSequence(Alphabet dataDict, boolean binary, boolean augmentable)
           
 

Uses of Alphabet in cc.mallet.pipe.iterator
 

Methods in cc.mallet.pipe.iterator that return Alphabet
 Alphabet RandomTokenSequenceIterator.getAlphabet()
           
 Alphabet RandomFeatureVectorIterator.getAlphabet()
           
 

Constructors in cc.mallet.pipe.iterator with parameters of type Alphabet
RandomFeatureVectorIterator(Randoms r, Alphabet vocab, java.lang.String[] classnames)
           
RandomTokenSequenceIterator(Randoms r, Alphabet vocab, java.lang.String[] classnames)
           
 

Uses of Alphabet in cc.mallet.topics
 

Fields in cc.mallet.topics declared as Alphabet
protected  Alphabet SimpleLDA.alphabet
           
 Alphabet ParallelTopicModel.alphabet
           
protected  Alphabet NPTopicModel.alphabet
           
protected  Alphabet LDAHyper.alphabet
          Deprecated.  
protected  Alphabet[] PolylingualTopicModel.alphabets
           
 

Methods in cc.mallet.topics that return Alphabet
 Alphabet SimpleLDA.getAlphabet()
           
 Alphabet ParallelTopicModel.getAlphabet()
           
 Alphabet LDAHyper.getAlphabet()
          Deprecated.  
 

Constructors in cc.mallet.topics with parameters of type Alphabet
TopicInferencer(int[][] typeTopicCounts, int[] tokensPerTopic, Alphabet alphabet, double[] alpha, double beta, double betaSum)
           
 

Uses of Alphabet in cc.mallet.types
 

Subclasses of Alphabet in cc.mallet.types
 class LabelAlphabet
          A mapping from arbitrary objects (usually String's) to integers (and corresponding Label objects) and back.
 

Methods in cc.mallet.types that return Alphabet
static Alphabet AlphabetFactory.alphabetOfSize(int n)
          Create a dummy alphabet with n dimensions
 Alphabet ROCData.getAlphabet()
           
 Alphabet NullLabel.getAlphabet()
           
 Alphabet Multinomial.getAlphabet()
           
 Alphabet LabelsSequence.getAlphabet()
           
 Alphabet Labels.getAlphabet()
           
 Alphabet Labelings.getAlphabet()
           
 Alphabet Label.getAlphabet()
           
 Alphabet InstanceList.getAlphabet()
           
 Alphabet Instance.getAlphabet()
           
 Alphabet FeatureVectorSequence.getAlphabet()
           
 Alphabet FeatureVector.getAlphabet()
           
 Alphabet FeatureSequence.getAlphabet()
           
 Alphabet FeatureSelection.getAlphabet()
           
 Alphabet Dirichlet.getAlphabet()
           
 Alphabet AlphabetCarrying.getAlphabet()
           
 Alphabet[] ROCData.getAlphabets()
           
 Alphabet[] NullLabel.getAlphabets()
           
 Alphabet[] LabelsSequence.getAlphabets()
           
 Alphabet[] Labels.getAlphabets()
           
 Alphabet[] Labelings.getAlphabets()
           
 Alphabet[] Label.getAlphabets()
           
 Alphabet[] InstanceList.getAlphabets()
           
 Alphabet[] Instance.getAlphabets()
           
 Alphabet[] FeatureVectorSequence.getAlphabets()
           
 Alphabet[] FeatureVector.getAlphabets()
           
 Alphabet[] FeatureSequence.getAlphabets()
           
 Alphabet[] FeatureSelection.getAlphabets()
           
 Alphabet[] AlphabetCarrying.getAlphabets()
           
 Alphabet FeatureSequenceWithBigrams.getBiAlphabet()
           
 Alphabet InstanceList.getDataAlphabet()
          Returns the Alphabet mapping features of the data to integers.
 Alphabet Instance.getDataAlphabet()
           
 Alphabet InstanceList.getTargetAlphabet()
          Returns the Alphabet mapping target output labels to integers.
 Alphabet Instance.getTargetAlphabet()
           
static Alphabet AlphabetFactory.loadFromFile(java.io.File alphabetFile)
          Load an alphabet from a file, one item per line
 

Methods in cc.mallet.types with parameters of type Alphabet
static FeatureSelection FeatureSelection.createFromRegex(Alphabet dictionary, java.util.regex.Pattern regex)
          Creates a FeatureSelection that includes only those features whose names match a given regex.
static boolean FeatureConjunction.featuresOverlap(Alphabet dictionary, int feature1, int feature2)
           
static int[] FeatureConjunction.getFeatureIndices(Alphabet dictionary, java.lang.String featureConjunctionName)
           
static java.lang.String FeatureConjunction.getName(Alphabet dictionary, int[] features)
           
static java.lang.String FeatureConjunction.getName(Alphabet dictionary, int[] features, boolean[] negations)
           
static java.lang.String FeatureConjunction.getName(Alphabet dictionary, int feature1, int feature2)
           
static int[] FeatureVector.getObjectIndices(java.lang.Object[] entries, Alphabet dict, boolean addIfNotPresent)
           
static FeatureVector FeatureVector.newFeatureVector(FeatureVector fv, Alphabet newVocab, FeatureSelection fs)
          Construct a new FeatureVector, selecting only those features in fs, and having new (presumably more compact, dense) Alphabet.
 void FeatureSequence.prune(double[] counts, Alphabet newAlphabet, int cutoff)
          Remove features from the sequence that occur fewer than cutoff times in the corpus, as indicated by the provided counts.
 void Multinomial.Estimator.setAlphabet(Alphabet d)
           
 FeatureSequence TokenSequence.toFeatureSequence(Alphabet dict)
           
 FeatureVector TokenSequence.toFeatureVector(Alphabet dict)
           
 FeatureVector Token.toFeatureVector(Alphabet dict, boolean binary)
           
 FeatureVector PropertyHolder.toFeatureVector(Alphabet dict, boolean binary)
           
 

Constructors in cc.mallet.types with parameters of type Alphabet
AugmentableFeatureVector(Alphabet dict)
           
AugmentableFeatureVector(Alphabet dict, boolean binary)
           
AugmentableFeatureVector(Alphabet dict, double[] values)
           
AugmentableFeatureVector(Alphabet dict, double[] values, int capacity)
           
AugmentableFeatureVector(Alphabet dict, int[] indices, double[] values, int capacity)
           
AugmentableFeatureVector(Alphabet dict, int[] indices, double[] values, int capacity, boolean copy)
           
AugmentableFeatureVector(Alphabet dict, int[] indices, double[] values, int capacity, boolean copy, boolean checkIndicesSorted)
           
AugmentableFeatureVector(Alphabet dict, int[] indices, double[] values, int capacity, int size, boolean copy, boolean checkIndicesSorted, boolean removeDuplicates)
          To make a binary vector, pass null for "values"
AugmentableFeatureVector(Alphabet dict, int capacity, boolean binary)
           
AugmentableFeatureVector(Alphabet dict, PropertyList pl, boolean binary)
           
AugmentableFeatureVector(Alphabet dict, PropertyList pl, boolean binary, boolean growAlphabet)
           
Dirichlet(Alphabet dict)
          A symmetric Dirichlet with alpha_i = 1.0 and the number of dimensions of the given alphabet.
Dirichlet(Alphabet dict, double alpha)
          A symmetric Dirichlet with alpha_i = alpha and the number of dimensions of the given alphabet.
Dirichlet(double[] alphas, Alphabet dict)
          Constructor that takes an alphabet representing the meaning of each dimension
FeatureConjunction(Alphabet dictionary, int[] features)
           
FeatureConjunction(Alphabet dictionary, int[] features, boolean[] negations)
           
FeatureConjunction(java.lang.String name, Alphabet dictionary, int[] features, boolean[] negations)
           
FeatureConjunction(java.lang.String name, Alphabet dictionary, int[] features, boolean[] negations, boolean checkSorted)
           
FeatureConjunction(java.lang.String name, Alphabet dictionary, int[] features, boolean[] negations, boolean checkSorted, boolean copyFeatures, boolean copyNegations)
          If negations[i] is true, insist that the feature has non-zero value; if false, insist that it has zero value.
FeatureCounter(Alphabet alphabet)
           
FeatureCounts(Alphabet vocab, double[] counts)
           
FeatureSelection(Alphabet dictionary)
           
FeatureSelection(Alphabet dictionary, java.util.BitSet selectedFeatures)
           
FeatureSequence(Alphabet dict)
           
FeatureSequence(Alphabet dict, int capacity)
           
FeatureSequence(Alphabet dict, int[] features)
          Creates a FeatureSequence given all of the objects in the sequence.
FeatureSequence(Alphabet dict, int[] features, int len)
           
FeatureSequenceWithBigrams(Alphabet dict, Alphabet bigramDictionary, TokenSequence ts)
           
FeatureVector(Alphabet dict, double[] values)
          Create a dense vector
FeatureVector(Alphabet dict, int[] featureIndices)
          Create binary vector
FeatureVector(Alphabet dict, int[] featureIndices, double[] values)
          Create non-binary vector, possibly dense if "featureIndices" or possibly sparse, if not
FeatureVector(Alphabet dict, int[] indices, double[] values, int capacity, int size, boolean copy, boolean checkIndicesSorted, boolean removeDuplicates)
           
FeatureVector(Alphabet dict, java.lang.Object[] keys, double[] values)
           
FeatureVector(Alphabet dict, PropertyList pl, boolean binary)
           
FeatureVector(Alphabet dict, PropertyList pl, boolean binary, boolean growAlphabet)
           
FeatureVector(FeatureVector fv, Alphabet newVocab, FeatureSelection fsNarrow, FeatureSelection fsWide)
           
FeatureVector(FeatureVector fv, Alphabet newVocab, int[] conjunctions)
          New feature vector containing all the features of "fv", plus new features created by making conjunctions between the features in "conjunctions" and all the other features.
FeatureVectorSequence(Alphabet dict, TokenSequence tokens)
           
FeatureVectorSequence(Alphabet dict, TokenSequence tokens, boolean binary, boolean augmentable)
           
FeatureVectorSequence(Alphabet dict, TokenSequence tokens, boolean binary, boolean augmentable, boolean growAlphabet)
           
GainRatio(Alphabet dataAlphabet, double[] gainRatios, double[] splitPoints, double baseEntropy, LabelVector baseLabelDistribution, int numSplitPointsForBestFeature, int minNumInsts)
           
InfoGain(Alphabet vocab, double[] infogains)
           
InstanceList(Alphabet dataAlphabet, Alphabet targetAlphabet)
          Construct an InstanceList with initial capacity of 10, with a Noop default pipe.
InstanceList(Randoms r, Alphabet vocab, java.lang.String[] classNames, int meanInstancesPerLabel)
           
LabelSequence(Alphabet dict)
           
Multinomial.Estimator(Alphabet dictionary)
           
Multinomial.Estimator(double[] counts, Alphabet dictionary)
           
Multinomial.Estimator(double[] counts, int size, Alphabet dictionary)
           
Multinomial.LaplaceEstimator(Alphabet dictionary)
           
Multinomial.Logged(double[] probabilities, Alphabet dictionary)
           
Multinomial.Logged(double[] probabilities, Alphabet dictionary, boolean areLoggedAlready)
           
Multinomial.Logged(double[] probabilities, Alphabet dictionary, int size)
           
Multinomial.Logged(double[] probabilities, Alphabet dictionary, int size, boolean areLoggedAlready)
           
Multinomial.MEstimator(Alphabet dictionary, double m)
           
Multinomial.MLEstimator(Alphabet dictionary)
           
Multinomial(double[] probabilities, Alphabet dictionary)
           
Multinomial(double[] probabilities, Alphabet dictionary, int size, boolean copy, boolean checkSum)
           
PartiallyRankedFeatureVector(Alphabet dict, AugmentableFeatureVector v)
           
PartiallyRankedFeatureVector(Alphabet dict, DenseVector v)
           
PartiallyRankedFeatureVector(Alphabet dict, double[] values)
           
PartiallyRankedFeatureVector(Alphabet dict, int[] indices, double[] values)
           
PartiallyRankedFeatureVector(Alphabet dict, SparseVector v)
           
RankedFeatureVector(Alphabet dict, AugmentableFeatureVector v)
           
RankedFeatureVector(Alphabet dict, DenseVector v)
           
RankedFeatureVector(Alphabet dict, double[] values)
           
RankedFeatureVector(Alphabet dict, double[] values, int begin, int length)
           
RankedFeatureVector(Alphabet dict, int[] indices, double[] values)
           
RankedFeatureVector(Alphabet dict, SparseVector v)
           
SparseVector(Alphabet dict, PropertyList pl, boolean binary)
           
SparseVector(Alphabet dict, PropertyList pl, boolean binary, boolean growAlphabet)
           
 

Uses of Alphabet in cc.mallet.util
 

Methods in cc.mallet.util with parameters of type Alphabet
static FeatureVector MVNormal.nextFeatureVector(Alphabet alphabet, double[] mean, double[] precision, Randoms random)