|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Alphabet | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.classify.tui | Command line programs for document classification. |
cc.mallet.cluster | Unsupervised clustering of Instance objects within an
InstanceList . |
cc.mallet.cluster.tui | |
cc.mallet.extract | Unimplemented. |
cc.mallet.fst | Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.fst.semi_supervised | |
cc.mallet.grmm.learning | |
cc.mallet.grmm.learning.extract | |
cc.mallet.grmm.util | |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
cc.mallet.pipe.iterator | Classes that generate instances from different kinds of input or data structures. |
cc.mallet.topics | |
cc.mallet.types | Fundamental MALLET types, including FeatureVector, Instance, Label etc. |
cc.mallet.util | Miscellaneous utilities including command line processing, math functions, lexing, logging. |
Uses of Alphabet in cc.mallet.classify |
---|
Methods in cc.mallet.classify that return Alphabet | |
---|---|
Alphabet |
NaiveBayesTrainer.getAlphabet()
|
Alphabet |
Classifier.getAlphabet()
|
Alphabet[] |
NaiveBayesTrainer.getAlphabets()
|
Alphabet[] |
Classifier.getAlphabets()
|
Methods in cc.mallet.classify with parameters of type Alphabet | |
---|---|
static java.util.ArrayList<java.lang.Integer> |
FeatureConstraintUtil.selectTopLDAFeatures(int numSelFeatures,
ParallelTopicModel lda,
Alphabet alphabet)
Select top features in LDA topics. |
Uses of Alphabet in cc.mallet.classify.tui |
---|
Methods in cc.mallet.classify.tui with parameters of type Alphabet | |
---|---|
static java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.Integer>> |
Vectors2FeatureConstraints.readFeaturesAndLabelsFromFile(java.io.File file,
Alphabet dataAlphabet,
Alphabet targetAlphabet)
|
Uses of Alphabet in cc.mallet.cluster |
---|
Methods in cc.mallet.cluster that return Alphabet | |
---|---|
Alphabet |
Record.fieldAlphabet()
|
Alphabet |
Record.valueAlphabet()
|
Constructors in cc.mallet.cluster with parameters of type Alphabet | |
---|---|
Record(Alphabet fieldAlph,
Alphabet valueAlph)
|
|
Record(Alphabet fieldAlph,
Alphabet valueAlph,
java.lang.String[][] vals)
|
Uses of Alphabet in cc.mallet.cluster.tui |
---|
Methods in cc.mallet.cluster.tui with parameters of type Alphabet | |
---|---|
static int[] |
Clusterings2Clusterer.string2ints(java.lang.String[] ss,
Alphabet alph)
|
Uses of Alphabet in cc.mallet.extract |
---|
Methods in cc.mallet.extract that return Alphabet | |
---|---|
Alphabet |
Extractor.getInputAlphabet()
Returns an alphabet of the features used by the extractor. |
Alphabet |
CRFExtractor.getInputAlphabet()
|
Uses of Alphabet in cc.mallet.fst |
---|
Fields in cc.mallet.fst declared as Alphabet | |
---|---|
protected Alphabet |
CRF.inputAlphabet
|
protected Alphabet |
CRF.outputAlphabet
|
Alphabet |
CRF.Factors.weightAlphabet
|
Methods in cc.mallet.fst that return Alphabet | |
---|---|
Alphabet |
HMM.getInputAlphabet()
|
Alphabet |
FeatureTransducer.getInputAlphabet()
|
Alphabet |
CRF.getInputAlphabet()
|
Alphabet |
HMM.getOutputAlphabet()
|
Alphabet |
FeatureTransducer.getOutputAlphabet()
|
Alphabet |
CRF.getOutputAlphabet()
|
Constructors in cc.mallet.fst with parameters of type Alphabet | |
---|---|
CRF(Alphabet inputAlphabet,
Alphabet outputAlphabet)
|
|
FeatureTransducer(Alphabet dictionary)
|
|
FeatureTransducer(Alphabet inputAlphabet,
Alphabet outputAlphabet)
|
|
HMM(Alphabet inputAlphabet,
Alphabet outputAlphabet)
|
|
MEMM(Alphabet inputAlphabet,
Alphabet outputAlphabet)
|
Uses of Alphabet in cc.mallet.fst.semi_supervised |
---|
Methods in cc.mallet.fst.semi_supervised that return Alphabet | |
---|---|
Alphabet |
StateLabelMap.getLabelAlphabet()
Returns the label (target) alphabet. |
Alphabet |
StateLabelMap.getStateAlphabet()
Returns the state alphabet. |
Constructors in cc.mallet.fst.semi_supervised with parameters of type Alphabet | |
---|---|
StateLabelMap(Alphabet labelAlphabet,
boolean isOneToOneMap)
|
|
StateLabelMap(Alphabet labelAlphabet,
boolean isOneToOneMap,
int startStateIndex)
Initializes the state and label maps. |
Uses of Alphabet in cc.mallet.grmm.learning |
---|
Fields in cc.mallet.grmm.learning declared as Alphabet | |
---|---|
Alphabet |
DefaultAcrfTrainer.TestResults.alphabet
|
Methods in cc.mallet.grmm.learning that return Alphabet | |
---|---|
Alphabet |
ACRF.getInputAlphabet()
|
Uses of Alphabet in cc.mallet.grmm.learning.extract |
---|
Methods in cc.mallet.grmm.learning.extract that return Alphabet | |
---|---|
Alphabet |
ACRFExtractor.getInputAlphabet()
|
Uses of Alphabet in cc.mallet.grmm.util |
---|
Methods in cc.mallet.grmm.util that return Alphabet | |
---|---|
Alphabet |
LabelsAssignment.getAlphabet()
|
Alphabet[] |
LabelsAssignment.getAlphabets()
|
Uses of Alphabet in cc.mallet.pipe |
---|
Methods in cc.mallet.pipe that return Alphabet | |
---|---|
Alphabet |
Pipe.getAlphabet()
|
Alphabet[] |
Pipe.getAlphabets()
|
Alphabet |
TokenSequence2FeatureSequenceWithBigrams.getBigramAlphabet()
|
Alphabet |
Pipe.getDataAlphabet()
|
Alphabet |
AddClassifierTokenPredictions.getDataAlphabet()
|
Alphabet |
FeatureCountPipe.getPrunedAlphabet(int minimumCount)
Returns a new alphabet that contains only features at or above the specified limit. |
Alphabet |
Pipe.getTargetAlphabet()
|
Methods in cc.mallet.pipe with parameters of type Alphabet | |
---|---|
AugmentableFeatureVectorAddConjunctions |
AugmentableFeatureVectorAddConjunctions.addConjunction(java.lang.String name,
Alphabet v,
int[] features,
boolean[] negations)
|
protected void |
Pipe.preceedingPipeDataAlphabetNotification(Alphabet a)
|
protected void |
Pipe.preceedingPipeTargetAlphabetNotification(Alphabet a)
|
void |
Pipe.setDataAlphabet(Alphabet dDict)
|
void |
Pipe.setOrCheckDataAlphabet(Alphabet a)
|
void |
Pipe.setOrCheckTargetAlphabet(Alphabet a)
|
void |
Pipe.setTargetAlphabet(Alphabet tDict)
|
Constructors in cc.mallet.pipe with parameters of type Alphabet | |
---|---|
Array2FeatureVector(Alphabet dataAlphabet,
Alphabet targetAlphabet)
Construct a pipe based on the dimensions of the data and target. |
|
FeatureCountPipe(Alphabet dataAlphabet,
Alphabet targetAlphabet)
|
|
FeatureDocFreqPipe(Alphabet dataAlphabet,
Alphabet targetAlphabet)
|
|
FeatureValueString2FeatureVector(Alphabet dataDict)
|
|
Noop(Alphabet dataDict,
Alphabet targetDict)
Pass through input without change, but force the creation of Alphabet's, so it can be shared by future DictionariedPipe's. |
|
Pipe(Alphabet dataDict,
Alphabet targetDict)
Construct pipe with data and target dictionaries. |
|
StringList2FeatureSequence(Alphabet dataDict)
|
|
Target2Label(Alphabet dataAlphabet,
LabelAlphabet labelAlphabet)
|
|
Token2FeatureVector(Alphabet dataDict)
|
|
Token2FeatureVector(Alphabet dataDict,
boolean binary,
boolean augmentable)
|
|
TokenSequence2FeatureSequence(Alphabet dataDict)
|
|
TokenSequence2FeatureSequenceWithBigrams(Alphabet dataDict)
|
|
TokenSequence2FeatureSequenceWithBigrams(Alphabet dataDict,
Alphabet bigramAlphabet)
|
|
TokenSequence2FeatureVectorSequence(Alphabet dataDict)
|
|
TokenSequence2FeatureVectorSequence(Alphabet dataDict,
boolean binary,
boolean augmentable)
|
Uses of Alphabet in cc.mallet.pipe.iterator |
---|
Methods in cc.mallet.pipe.iterator that return Alphabet | |
---|---|
Alphabet |
RandomTokenSequenceIterator.getAlphabet()
|
Alphabet |
RandomFeatureVectorIterator.getAlphabet()
|
Constructors in cc.mallet.pipe.iterator with parameters of type Alphabet | |
---|---|
RandomFeatureVectorIterator(Randoms r,
Alphabet vocab,
java.lang.String[] classnames)
|
|
RandomTokenSequenceIterator(Randoms r,
Alphabet vocab,
java.lang.String[] classnames)
|
Uses of Alphabet in cc.mallet.topics |
---|
Fields in cc.mallet.topics declared as Alphabet | |
---|---|
protected Alphabet |
SimpleLDA.alphabet
|
Alphabet |
ParallelTopicModel.alphabet
|
protected Alphabet |
NPTopicModel.alphabet
|
protected Alphabet |
LDAHyper.alphabet
Deprecated. |
protected Alphabet[] |
PolylingualTopicModel.alphabets
|
Methods in cc.mallet.topics that return Alphabet | |
---|---|
Alphabet |
SimpleLDA.getAlphabet()
|
Alphabet |
ParallelTopicModel.getAlphabet()
|
Alphabet |
LDAHyper.getAlphabet()
Deprecated. |
Constructors in cc.mallet.topics with parameters of type Alphabet | |
---|---|
TopicInferencer(int[][] typeTopicCounts,
int[] tokensPerTopic,
Alphabet alphabet,
double[] alpha,
double beta,
double betaSum)
|
Uses of Alphabet in cc.mallet.types |
---|
Subclasses of Alphabet in cc.mallet.types | |
---|---|
class |
LabelAlphabet
A mapping from arbitrary objects (usually String's) to integers (and corresponding Label objects) and back. |
Methods in cc.mallet.types that return Alphabet | |
---|---|
static Alphabet |
AlphabetFactory.alphabetOfSize(int n)
Create a dummy alphabet with n dimensions |
Alphabet |
ROCData.getAlphabet()
|
Alphabet |
NullLabel.getAlphabet()
|
Alphabet |
Multinomial.getAlphabet()
|
Alphabet |
LabelsSequence.getAlphabet()
|
Alphabet |
Labels.getAlphabet()
|
Alphabet |
Labelings.getAlphabet()
|
Alphabet |
Label.getAlphabet()
|
Alphabet |
InstanceList.getAlphabet()
|
Alphabet |
Instance.getAlphabet()
|
Alphabet |
FeatureVectorSequence.getAlphabet()
|
Alphabet |
FeatureVector.getAlphabet()
|
Alphabet |
FeatureSequence.getAlphabet()
|
Alphabet |
FeatureSelection.getAlphabet()
|
Alphabet |
Dirichlet.getAlphabet()
|
Alphabet |
AlphabetCarrying.getAlphabet()
|
Alphabet[] |
ROCData.getAlphabets()
|
Alphabet[] |
NullLabel.getAlphabets()
|
Alphabet[] |
LabelsSequence.getAlphabets()
|
Alphabet[] |
Labels.getAlphabets()
|
Alphabet[] |
Labelings.getAlphabets()
|
Alphabet[] |
Label.getAlphabets()
|
Alphabet[] |
InstanceList.getAlphabets()
|
Alphabet[] |
Instance.getAlphabets()
|
Alphabet[] |
FeatureVectorSequence.getAlphabets()
|
Alphabet[] |
FeatureVector.getAlphabets()
|
Alphabet[] |
FeatureSequence.getAlphabets()
|
Alphabet[] |
FeatureSelection.getAlphabets()
|
Alphabet[] |
AlphabetCarrying.getAlphabets()
|
Alphabet |
FeatureSequenceWithBigrams.getBiAlphabet()
|
Alphabet |
InstanceList.getDataAlphabet()
Returns the Alphabet mapping features of the data to
integers. |
Alphabet |
Instance.getDataAlphabet()
|
Alphabet |
InstanceList.getTargetAlphabet()
Returns the Alphabet mapping target output labels to
integers. |
Alphabet |
Instance.getTargetAlphabet()
|
static Alphabet |
AlphabetFactory.loadFromFile(java.io.File alphabetFile)
Load an alphabet from a file, one item per line |
Methods in cc.mallet.types with parameters of type Alphabet | |
---|---|
static FeatureSelection |
FeatureSelection.createFromRegex(Alphabet dictionary,
java.util.regex.Pattern regex)
Creates a FeatureSelection that includes only those features whose names match a given regex. |
static boolean |
FeatureConjunction.featuresOverlap(Alphabet dictionary,
int feature1,
int feature2)
|
static int[] |
FeatureConjunction.getFeatureIndices(Alphabet dictionary,
java.lang.String featureConjunctionName)
|
static java.lang.String |
FeatureConjunction.getName(Alphabet dictionary,
int[] features)
|
static java.lang.String |
FeatureConjunction.getName(Alphabet dictionary,
int[] features,
boolean[] negations)
|
static java.lang.String |
FeatureConjunction.getName(Alphabet dictionary,
int feature1,
int feature2)
|
static int[] |
FeatureVector.getObjectIndices(java.lang.Object[] entries,
Alphabet dict,
boolean addIfNotPresent)
|
static FeatureVector |
FeatureVector.newFeatureVector(FeatureVector fv,
Alphabet newVocab,
FeatureSelection fs)
Construct a new FeatureVector, selecting only those features in fs, and having new (presumably more compact, dense) Alphabet. |
void |
FeatureSequence.prune(double[] counts,
Alphabet newAlphabet,
int cutoff)
Remove features from the sequence that occur fewer than cutoff times in the corpus, as indicated by
the provided counts. |
void |
Multinomial.Estimator.setAlphabet(Alphabet d)
|
FeatureSequence |
TokenSequence.toFeatureSequence(Alphabet dict)
|
FeatureVector |
TokenSequence.toFeatureVector(Alphabet dict)
|
FeatureVector |
Token.toFeatureVector(Alphabet dict,
boolean binary)
|
FeatureVector |
PropertyHolder.toFeatureVector(Alphabet dict,
boolean binary)
|
Constructors in cc.mallet.types with parameters of type Alphabet | |
---|---|
AugmentableFeatureVector(Alphabet dict)
|
|
AugmentableFeatureVector(Alphabet dict,
boolean binary)
|
|
AugmentableFeatureVector(Alphabet dict,
double[] values)
|
|
AugmentableFeatureVector(Alphabet dict,
double[] values,
int capacity)
|
|
AugmentableFeatureVector(Alphabet dict,
int[] indices,
double[] values,
int capacity)
|
|
AugmentableFeatureVector(Alphabet dict,
int[] indices,
double[] values,
int capacity,
boolean copy)
|
|
AugmentableFeatureVector(Alphabet dict,
int[] indices,
double[] values,
int capacity,
boolean copy,
boolean checkIndicesSorted)
|
|
AugmentableFeatureVector(Alphabet dict,
int[] indices,
double[] values,
int capacity,
int size,
boolean copy,
boolean checkIndicesSorted,
boolean removeDuplicates)
To make a binary vector, pass null for "values" |
|
AugmentableFeatureVector(Alphabet dict,
int capacity,
boolean binary)
|
|
AugmentableFeatureVector(Alphabet dict,
PropertyList pl,
boolean binary)
|
|
AugmentableFeatureVector(Alphabet dict,
PropertyList pl,
boolean binary,
boolean growAlphabet)
|
|
Dirichlet(Alphabet dict)
A symmetric Dirichlet with alpha_i = 1.0 and the number of dimensions of the given alphabet. |
|
Dirichlet(Alphabet dict,
double alpha)
A symmetric Dirichlet with alpha_i = alpha and the
number of dimensions of the given alphabet. |
|
Dirichlet(double[] alphas,
Alphabet dict)
Constructor that takes an alphabet representing the meaning of each dimension |
|
FeatureConjunction(Alphabet dictionary,
int[] features)
|
|
FeatureConjunction(Alphabet dictionary,
int[] features,
boolean[] negations)
|
|
FeatureConjunction(java.lang.String name,
Alphabet dictionary,
int[] features,
boolean[] negations)
|
|
FeatureConjunction(java.lang.String name,
Alphabet dictionary,
int[] features,
boolean[] negations,
boolean checkSorted)
|
|
FeatureConjunction(java.lang.String name,
Alphabet dictionary,
int[] features,
boolean[] negations,
boolean checkSorted,
boolean copyFeatures,
boolean copyNegations)
If negations[i] is true, insist that the feature has non-zero value; if false, insist that it has zero value. |
|
FeatureCounter(Alphabet alphabet)
|
|
FeatureCounts(Alphabet vocab,
double[] counts)
|
|
FeatureSelection(Alphabet dictionary)
|
|
FeatureSelection(Alphabet dictionary,
java.util.BitSet selectedFeatures)
|
|
FeatureSequence(Alphabet dict)
|
|
FeatureSequence(Alphabet dict,
int capacity)
|
|
FeatureSequence(Alphabet dict,
int[] features)
Creates a FeatureSequence given all of the objects in the sequence. |
|
FeatureSequence(Alphabet dict,
int[] features,
int len)
|
|
FeatureSequenceWithBigrams(Alphabet dict,
Alphabet bigramDictionary,
TokenSequence ts)
|
|
FeatureVector(Alphabet dict,
double[] values)
Create a dense vector |
|
FeatureVector(Alphabet dict,
int[] featureIndices)
Create binary vector |
|
FeatureVector(Alphabet dict,
int[] featureIndices,
double[] values)
Create non-binary vector, possibly dense if "featureIndices" or possibly sparse, if not |
|
FeatureVector(Alphabet dict,
int[] indices,
double[] values,
int capacity,
int size,
boolean copy,
boolean checkIndicesSorted,
boolean removeDuplicates)
|
|
FeatureVector(Alphabet dict,
java.lang.Object[] keys,
double[] values)
|
|
FeatureVector(Alphabet dict,
PropertyList pl,
boolean binary)
|
|
FeatureVector(Alphabet dict,
PropertyList pl,
boolean binary,
boolean growAlphabet)
|
|
FeatureVector(FeatureVector fv,
Alphabet newVocab,
FeatureSelection fsNarrow,
FeatureSelection fsWide)
|
|
FeatureVector(FeatureVector fv,
Alphabet newVocab,
int[] conjunctions)
New feature vector containing all the features of "fv", plus new features created by making conjunctions between the features in "conjunctions" and all the other features. |
|
FeatureVectorSequence(Alphabet dict,
TokenSequence tokens)
|
|
FeatureVectorSequence(Alphabet dict,
TokenSequence tokens,
boolean binary,
boolean augmentable)
|
|
FeatureVectorSequence(Alphabet dict,
TokenSequence tokens,
boolean binary,
boolean augmentable,
boolean growAlphabet)
|
|
GainRatio(Alphabet dataAlphabet,
double[] gainRatios,
double[] splitPoints,
double baseEntropy,
LabelVector baseLabelDistribution,
int numSplitPointsForBestFeature,
int minNumInsts)
|
|
InfoGain(Alphabet vocab,
double[] infogains)
|
|
InstanceList(Alphabet dataAlphabet,
Alphabet targetAlphabet)
Construct an InstanceList with initial capacity of 10, with a Noop default pipe. |
|
InstanceList(Randoms r,
Alphabet vocab,
java.lang.String[] classNames,
int meanInstancesPerLabel)
|
|
LabelSequence(Alphabet dict)
|
|
Multinomial.Estimator(Alphabet dictionary)
|
|
Multinomial.Estimator(double[] counts,
Alphabet dictionary)
|
|
Multinomial.Estimator(double[] counts,
int size,
Alphabet dictionary)
|
|
Multinomial.LaplaceEstimator(Alphabet dictionary)
|
|
Multinomial.Logged(double[] probabilities,
Alphabet dictionary)
|
|
Multinomial.Logged(double[] probabilities,
Alphabet dictionary,
boolean areLoggedAlready)
|
|
Multinomial.Logged(double[] probabilities,
Alphabet dictionary,
int size)
|
|
Multinomial.Logged(double[] probabilities,
Alphabet dictionary,
int size,
boolean areLoggedAlready)
|
|
Multinomial.MEstimator(Alphabet dictionary,
double m)
|
|
Multinomial.MLEstimator(Alphabet dictionary)
|
|
Multinomial(double[] probabilities,
Alphabet dictionary)
|
|
Multinomial(double[] probabilities,
Alphabet dictionary,
int size,
boolean copy,
boolean checkSum)
|
|
PartiallyRankedFeatureVector(Alphabet dict,
AugmentableFeatureVector v)
|
|
PartiallyRankedFeatureVector(Alphabet dict,
DenseVector v)
|
|
PartiallyRankedFeatureVector(Alphabet dict,
double[] values)
|
|
PartiallyRankedFeatureVector(Alphabet dict,
int[] indices,
double[] values)
|
|
PartiallyRankedFeatureVector(Alphabet dict,
SparseVector v)
|
|
RankedFeatureVector(Alphabet dict,
AugmentableFeatureVector v)
|
|
RankedFeatureVector(Alphabet dict,
DenseVector v)
|
|
RankedFeatureVector(Alphabet dict,
double[] values)
|
|
RankedFeatureVector(Alphabet dict,
double[] values,
int begin,
int length)
|
|
RankedFeatureVector(Alphabet dict,
int[] indices,
double[] values)
|
|
RankedFeatureVector(Alphabet dict,
SparseVector v)
|
|
SparseVector(Alphabet dict,
PropertyList pl,
boolean binary)
|
|
SparseVector(Alphabet dict,
PropertyList pl,
boolean binary,
boolean growAlphabet)
|
Uses of Alphabet in cc.mallet.util |
---|
Methods in cc.mallet.util with parameters of type Alphabet | |
---|---|
static FeatureVector |
MVNormal.nextFeatureVector(Alphabet alphabet,
double[] mean,
double[] precision,
Randoms random)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |