|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Sequence | |
---|---|
cc.mallet.extract | Unimplemented. |
cc.mallet.fst | Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.fst.confidence | |
cc.mallet.fst.semi_supervised.pr | |
cc.mallet.fst.semi_supervised.tui | |
cc.mallet.grmm.learning | |
cc.mallet.pipe.iterator | Classes that generate instances from different kinds of input or data structures. |
cc.mallet.types | Fundamental MALLET types, including FeatureVector, Instance, Label etc. |
cc.mallet.util | Miscellaneous utilities including command line processing, math functions, lexing, logging. |
Uses of Sequence in cc.mallet.extract |
---|
Subinterfaces of Sequence in cc.mallet.extract | |
---|---|
interface |
Tokenization
|
Classes in cc.mallet.extract that implement Sequence | |
---|---|
class |
LabeledSpans
Created: Oct 31, 2004 |
class |
StringTokenization
|
Methods in cc.mallet.extract that return Sequence | |
---|---|
Sequence |
DocumentExtraction.getPredictedLabels()
|
Sequence |
CRFExtractor.pipeInput(java.lang.Object input)
|
Methods in cc.mallet.extract with parameters of type Sequence | |
---|---|
LabeledSpans |
TokenizationFilter.constructLabeledSpans(LabelAlphabet dict,
java.lang.Object document,
Label backgroundTag,
Tokenization input,
Sequence seq)
Converts a the sequence of labels into a set of labeled spans. |
LabeledSpans |
HierarchicalTokenizationFilter.constructLabeledSpans(LabelAlphabet dict,
java.lang.Object document,
Label backgroundTag,
Tokenization input,
Sequence seq)
|
LabeledSpans |
DefaultTokenizationFilter.constructLabeledSpans(LabelAlphabet dict,
java.lang.Object document,
Label backgroundTag,
Tokenization input,
Sequence seq)
|
LabeledSpans |
ConfidenceTokenizationFilter.constructLabeledSpans(LabelAlphabet dict,
java.lang.Object document,
Label backgroundTag,
Tokenization input,
Sequence seq)
|
LabeledSpans |
BIOTokenizationFilter.constructLabeledSpans(LabelAlphabet dict,
java.lang.Object document,
Label backgroundTag,
Tokenization input,
Sequence seq)
|
Constructors in cc.mallet.extract with parameters of type Sequence | |
---|---|
DocumentExtraction(java.lang.String name,
LabelAlphabet dict,
Tokenization input,
Sequence predicted,
Sequence target,
java.lang.String background)
|
|
DocumentExtraction(java.lang.String name,
LabelAlphabet dict,
Tokenization input,
Sequence predicted,
Sequence target,
java.lang.String background)
|
|
DocumentExtraction(java.lang.String name,
LabelAlphabet dict,
Tokenization input,
Sequence predicted,
Sequence target,
java.lang.String background,
TokenizationFilter filter)
|
|
DocumentExtraction(java.lang.String name,
LabelAlphabet dict,
Tokenization input,
Sequence predicted,
Sequence target,
java.lang.String background,
TokenizationFilter filter)
|
|
DocumentExtraction(java.lang.String name,
LabelAlphabet dict,
Tokenization input,
Sequence predicted,
java.lang.String background)
|
|
Extraction(Extractor extractor,
LabelAlphabet dict,
java.lang.String name,
Tokenization input,
Sequence output,
java.lang.String background)
Creates an extration given a sequence output by some kind of per-sequece labeler, like an HMM or a CRF. |
Uses of Sequence in cc.mallet.fst |
---|
Methods in cc.mallet.fst that return Sequence | |
---|---|
static Sequence[] |
SimpleTagger.apply(Transducer model,
Sequence input,
int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences. |
Sequence<java.lang.Object> |
MaxLatticeDefault.bestOutputSequence()
|
Sequence<java.lang.Object> |
MaxLattice.bestOutputSequence()
|
Sequence<Transducer.State> |
MaxLatticeDefault.bestStateSequence()
|
Sequence<Transducer.State> |
MaxLattice.bestStateSequence()
|
Sequence |
SumLatticeScaling.getInput()
|
Sequence |
SumLatticeDefault.getInput()
|
Sequence |
SumLatticeBeam.getInput()
|
Sequence |
SumLattice.getInput()
|
Sequence |
Segment.getInput()
|
Sequence |
MaxLatticeDefault.getInput()
|
Sequence |
Segment.getPredicted()
|
Sequence |
MaxLatticeDefault.getProvidedOutput()
|
Sequence |
Segment.getSegmentInputSequence()
|
Sequence |
Segment.getTruth()
|
Sequence[] |
CRF.predict(InstanceList testing)
Deprecated. |
Sequence |
Transducer.transduce(Sequence input)
Converts the given sequence into another sequence according to this transducer. |
Methods in cc.mallet.fst that return types with arguments of type Sequence | |
---|---|
java.util.List<Sequence<java.lang.Object>> |
MaxLatticeDefault.bestOutputSequences(int n)
|
java.util.List<Sequence<java.lang.Object>> |
MaxLattice.bestOutputSequences(int n)
|
java.util.List<Sequence<Transducer.State>> |
MaxLatticeDefault.bestStateSequences(int n)
|
java.util.List<Sequence<Transducer.State>> |
MaxLattice.bestStateSequences(int n)
|
Methods in cc.mallet.fst with parameters of type Sequence | |
---|---|
static Sequence[] |
SimpleTagger.apply(Transducer model,
Sequence input,
int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences. |
double |
MaxLatticeDefault.elementwiseAccuracy(Sequence referenceOutput)
|
double |
MaxLattice.elementwiseAccuracy(Sequence referenceOutput)
|
MaxLattice |
MaxLatticeFactory.newMaxLattice(Transducer trans,
Sequence inputSequence)
|
abstract MaxLattice |
MaxLatticeFactory.newMaxLattice(Transducer trans,
Sequence inputSequence,
Sequence outputSequence)
|
abstract MaxLattice |
MaxLatticeFactory.newMaxLattice(Transducer trans,
Sequence inputSequence,
Sequence outputSequence)
|
MaxLattice |
MaxLatticeDefault.Factory.newMaxLattice(Transducer trans,
Sequence inputSequence,
Sequence outputSequence)
|
MaxLattice |
MaxLatticeDefault.Factory.newMaxLattice(Transducer trans,
Sequence inputSequence,
Sequence outputSequence)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
SumLattice |
SumLatticeScaling.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeScaling.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
abstract SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
Returns a SumLattice object to run forward-backward. |
abstract SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
Returns a SumLattice object to run forward-backward. |
SumLattice |
SumLatticeDefault.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeDefault.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeBeam.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeBeam.Factory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
SumLattice |
SumLatticeFactory.newSumLattice(Transducer trans,
Sequence input,
Transducer.Incrementor incrementor)
|
int |
MultiSegmentationEvaluator.numIncorrectSegments(Sequence trueOutput,
Sequence predOutput)
Returns the number of incorrect segments in predOutput |
int |
MultiSegmentationEvaluator.numIncorrectSegments(Sequence trueOutput,
Sequence predOutput)
Returns the number of incorrect segments in predOutput |
void |
Segment.setPredicted(Sequence predicted)
|
double |
MaxLatticeDefault.tokenAccuracy(Sequence referenceOutput,
java.io.PrintWriter out)
|
Sequence |
Transducer.transduce(Sequence input)
Converts the given sequence into another sequence according to this transducer. |
Transducer.TransitionIterator |
Transducer.State.transitionIterator(Sequence input,
int inputPosition)
|
Transducer.TransitionIterator |
FeatureTransducer.State.transitionIterator(Sequence inputSequence,
int inputPosition)
|
abstract Transducer.TransitionIterator |
Transducer.State.transitionIterator(Sequence input,
int inputPosition,
Sequence output,
int outputPosition)
|
abstract Transducer.TransitionIterator |
Transducer.State.transitionIterator(Sequence input,
int inputPosition,
Sequence output,
int outputPosition)
|
Transducer.TransitionIterator |
MEMM.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Transducer.TransitionIterator |
MEMM.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Transducer.TransitionIterator |
HMM.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Transducer.TransitionIterator |
HMM.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Transducer.TransitionIterator |
FeatureTransducer.State.transitionIterator(Sequence input,
int inputPosition,
Sequence output,
int outputPosition)
|
Transducer.TransitionIterator |
FeatureTransducer.State.transitionIterator(Sequence input,
int inputPosition,
Sequence output,
int outputPosition)
|
Transducer.TransitionIterator |
CRF.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Transducer.TransitionIterator |
CRF.State.transitionIterator(Sequence inputSequence,
int inputPosition,
Sequence outputSequence,
int outputPosition)
|
Method parameters in cc.mallet.fst with type arguments of type Sequence | |
---|---|
void |
MultiSegmentationEvaluator.batchTest(InstanceList data,
java.util.List<Sequence> predictedSequences,
java.lang.String description,
java.io.PrintStream viterbiOutputStream)
Tests segmentation using an ArrayList of predicted Sequences instead of a Transducer . |
Constructors in cc.mallet.fst with parameters of type Sequence | |
---|---|
MaxLatticeDefault(Transducer t,
Sequence inputSequence)
|
|
MaxLatticeDefault(Transducer t,
Sequence inputSequence,
Sequence outputSequence)
|
|
MaxLatticeDefault(Transducer t,
Sequence inputSequence,
Sequence outputSequence)
|
|
MaxLatticeDefault(Transducer t,
Sequence inputSequence,
Sequence outputSequence,
int maxCaches)
Initiate Viterbi decoding of the inputSequence, contrained to match non-null parts of the outputSequence. |
|
MaxLatticeDefault(Transducer t,
Sequence inputSequence,
Sequence outputSequence,
int maxCaches)
Initiate Viterbi decoding of the inputSequence, contrained to match non-null parts of the outputSequence. |
|
Segment(Sequence input,
Sequence pred,
Sequence truth,
int start,
int end,
java.lang.Object startTag,
java.lang.Object inTag)
Initializes the segment. |
|
Segment(Sequence input,
Sequence pred,
Sequence truth,
int start,
int end,
java.lang.Object startTag,
java.lang.Object inTag)
Initializes the segment. |
|
Segment(Sequence input,
Sequence pred,
Sequence truth,
int start,
int end,
java.lang.Object startTag,
java.lang.Object inTag)
Initializes the segment. |
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
int[] constraints)
Create a lattice that constrains its transitions such that the |
|
SumLatticeBeam(Transducer t,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
int[] constraints)
Create a lattice that constrains its transitions such that the |
|
SumLatticeConstrained(Transducer t,
Sequence input,
Sequence output,
Segment requiredSegment,
Sequence constrainedSequence)
|
|
SumLatticeConstrained(Transducer t,
Sequence input,
Sequence output,
Segment requiredSegment,
Sequence constrainedSequence)
|
|
SumLatticeConstrained(Transducer t,
Sequence input,
Sequence output,
Segment requiredSegment,
Sequence constrainedSequence)
|
|
SumLatticeConstrained(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
int[] constraints)
Create a lattice that constrains its transitions such that the |
|
SumLatticeConstrained(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
int[] constraints)
Create a lattice that constrains its transitions such that the |
|
SumLatticeDefault(Transducer trans,
Sequence input)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
boolean saveXis)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
|
SumLatticeDefault(Transducer trans,
Sequence input,
Transducer.Incrementor incrementor)
|
|
SumLatticeScaling(Transducer trans,
Sequence input)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
boolean saveXis)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Sequence output,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet)
|
|
SumLatticeScaling(Transducer trans,
Sequence input,
Transducer.Incrementor incrementor)
|
Uses of Sequence in cc.mallet.fst.confidence |
---|
Constructors in cc.mallet.fst.confidence with parameters of type Sequence | |
---|---|
ConfidenceEvaluator.EntityConfidence(double conf,
boolean corr,
Sequence input,
int start,
int end)
|
|
InstanceWithConfidence(Instance inst,
double c,
Sequence predicted)
|
Uses of Sequence in cc.mallet.fst.semi_supervised.pr |
---|
Methods in cc.mallet.fst.semi_supervised.pr that return Sequence | |
---|---|
Sequence |
SumLatticePR.getInput()
|
Sequence |
SumLatticeKL.getInput()
|
Sequence |
SumLatticeDefaultCachedDot.getInput()
|
Methods in cc.mallet.fst.semi_supervised.pr with parameters of type Sequence | |
---|---|
double |
PRAuxiliaryModel.getWeight(int index,
int position,
Sequence input,
Transducer.TransitionIterator iter)
|
void |
PRAuxiliaryModel.incrementTransition(int index,
int position,
Sequence input,
Transducer.TransitionIterator iter,
double prob)
|
void |
PRAuxiliaryModel.preProcess(int index,
int position,
Sequence input)
|
Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type Sequence | |
---|---|
CachedDotTransitionIterator(CRF.State source,
Sequence inputSeq,
int inputPosition,
java.lang.String output,
double[] dots)
|
|
SumLatticeDefaultCachedDot(Transducer trans,
Sequence input,
Sequence output,
double[][][] cachedDots,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeDefaultCachedDot(Transducer trans,
Sequence input,
Sequence output,
double[][][] cachedDots,
Transducer.Incrementor incrementor,
boolean saveXis,
LabelAlphabet outputAlphabet)
|
|
SumLatticeKL(Transducer trans,
Sequence input,
double[] initProbs,
double[] finalProbs,
double[][][] xis,
double[][][] cachedDots,
Transducer.Incrementor incrementor)
|
|
SumLatticePR(Transducer trans,
int index,
Sequence input,
Sequence output,
PRAuxiliaryModel auxModel,
double[][][] cachedDots,
boolean incrementConstraints,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
boolean saveXis)
|
|
SumLatticePR(Transducer trans,
int index,
Sequence input,
Sequence output,
PRAuxiliaryModel auxModel,
double[][][] cachedDots,
boolean incrementConstraints,
Transducer.Incrementor incrementor,
LabelAlphabet outputAlphabet,
boolean saveXis)
|
Uses of Sequence in cc.mallet.fst.semi_supervised.tui |
---|
Methods in cc.mallet.fst.semi_supervised.tui that return Sequence | |
---|---|
static Sequence[] |
SimpleTaggerWithConstraints.apply(Transducer model,
Sequence input,
int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences. |
Methods in cc.mallet.fst.semi_supervised.tui with parameters of type Sequence | |
---|---|
static Sequence[] |
SimpleTaggerWithConstraints.apply(Transducer model,
Sequence input,
int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences. |
Uses of Sequence in cc.mallet.grmm.learning |
---|
Methods in cc.mallet.grmm.learning with parameters of type Sequence | |
---|---|
void |
MultiSegmentationEvaluatorACRF.TestResults.incrementCounts(Sequence trueOutput,
Sequence predOutput)
|
void |
MultiSegmentationEvaluatorACRF.TestResults.incrementCounts(Sequence trueOutput,
Sequence predOutput)
|
Uses of Sequence in cc.mallet.pipe.iterator |
---|
Constructors in cc.mallet.pipe.iterator with parameters of type Sequence | |
---|---|
SegmentIterator(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags,
Sequence prediction)
Iterate over segments in one instance. |
|
SegmentIterator(Sequence input,
Sequence predicted,
Sequence truth,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Iterate over segments in one labeled sequence |
|
SegmentIterator(Sequence input,
Sequence predicted,
Sequence truth,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Iterate over segments in one labeled sequence |
|
SegmentIterator(Sequence input,
Sequence predicted,
Sequence truth,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Iterate over segments in one labeled sequence |
Uses of Sequence in cc.mallet.types |
---|
Classes in cc.mallet.types that implement Sequence | |
---|---|
class |
ArrayListSequence<E>
|
class |
ArraySequence<E>
|
class |
FeatureSequence
An implementation of Sequence that ensures that every
Object in the sequence has the same class. |
class |
FeatureSequenceWithBigrams
A FeatureSequence with a parallel record of bigrams, kept in a separate dictionary |
class |
FeatureVectorSequence
|
class |
LabelSequence
|
class |
LabelsSequence
A simple Sequence implementation where all of the
elements must be Labels. |
class |
StringEditFeatureVectorSequence
|
class |
TokenSequence
A representation of a piece of text, usually a single word, to which we can attach properties. |
Fields in cc.mallet.types declared as Sequence | |
---|---|
protected Sequence<I> |
SequencePair.input
|
protected Sequence<O> |
SequencePair.output
|
Methods in cc.mallet.types that return Sequence | |
---|---|
Sequence<I> |
SequencePair.input()
|
Sequence<O> |
SequencePair.output()
|
Constructors in cc.mallet.types with parameters of type Sequence | |
---|---|
ArraySequence(Sequence<E> s,
boolean copy)
|
|
SequencePair(Sequence<I> input,
Sequence<O> output)
|
|
SequencePair(Sequence<I> input,
Sequence<O> output)
|
|
SequencePairAlignment(Sequence<I> input,
Sequence<O> output,
double weight)
|
|
SequencePairAlignment(Sequence<I> input,
Sequence<O> output,
double weight)
|
Uses of Sequence in cc.mallet.util |
---|
Methods in cc.mallet.util with parameters of type Sequence | |
---|---|
static double |
Sequences.elementwiseAccuracy(Sequence truth,
Sequence predicted)
|
static double |
Sequences.elementwiseAccuracy(Sequence truth,
Sequence predicted)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |