|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use ClassifierTrainer | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
Uses of ClassifierTrainer in cc.mallet.classify |
---|
Classes in cc.mallet.classify with type parameters of type ClassifierTrainer | |
---|---|
static class |
ClassifierTrainer.Factory<CT extends ClassifierTrainer<? extends Classifier>>
Instances of a Factory know how to create new ClassifierTrainers to apply to new Classifiers. |
Subclasses of ClassifierTrainer in cc.mallet.classify | |
---|---|
class |
AdaBoostM2Trainer
This version of AdaBoost can handle multi-class problems. |
class |
AdaBoostTrainer
This version of AdaBoost should be used only for binary classification. |
class |
BaggingTrainer
Bagging Trainer. |
class |
BalancedWinnowTrainer
An implementation of the training methods of a BalancedWinnow on-line classifier. |
class |
C45Trainer
A C4.5 decision tree learner, approximtely. |
class |
ClassifierEnsembleTrainer
|
class |
ConfidencePredictingClassifierTrainer
|
class |
DecisionTreeTrainer
A decision tree learner, roughly ID3, but only to a fixed given depth in all branches. |
class |
FeatureSelectingClassifierTrainer
Adaptor for adding feature selection to a classifier trainer. |
class |
MaxEntGERangeTrainer
Training of MaxEnt models with labeled features using Generalized Expectation Criteria. |
class |
MaxEntGETrainer
Training of MaxEnt models with labeled features using Generalized Expectation Criteria. |
class |
MaxEntL1Trainer
|
class |
MaxEntPRTrainer
Penalty (soft) version of Posterior Regularization (PR) for training MaxEnt. |
class |
MaxEntTrainer
The trainer for a Maximum Entropy classifier. |
class |
MCMaxEntTrainer
The trainer for a Maximum Entropy classifier. |
class |
NaiveBayesEMTrainer
|
class |
NaiveBayesTrainer
Class used to generate a NaiveBayes classifier from a set of training data. |
class |
RankMaxEntTrainer
The trainer for a RankMaxEnt classifier. |
class |
WinnowTrainer
An implementation of the training methods of a Winnow2 on-line classifier. |
Methods in cc.mallet.classify with parameters of type ClassifierTrainer | |
---|---|
void |
ClassifierEvaluator.evaluate(ClassifierTrainer ct)
Evaluates a ClassifierTrainer and its Classifier on the instance lists specified in the constructor. |
abstract void |
ClassifierEvaluator.evaluateInstanceList(ClassifierTrainer trainer,
InstanceList instances,
java.lang.String description)
|
void |
ClassifierAccuracyEvaluator.evaluateInstanceList(ClassifierTrainer trainer,
InstanceList instances,
java.lang.String description)
|
protected void |
ClassifierEvaluator.preamble(ClassifierTrainer ct)
|
Constructors in cc.mallet.classify with parameters of type ClassifierTrainer | |
---|---|
AdaBoostM2Trainer(ClassifierTrainer weakLearner)
|
|
AdaBoostM2Trainer(ClassifierTrainer weakLearner,
int numRounds)
|
|
AdaBoostTrainer(ClassifierTrainer weakLearner)
|
|
AdaBoostTrainer(ClassifierTrainer weakLearner,
int numRounds)
|
|
ConfidencePredictingClassifierTrainer(ClassifierTrainer underlyingClassifierTrainer,
InstanceList validationSet)
|
|
ConfidencePredictingClassifierTrainer(ClassifierTrainer underlyingClassifierTrainer,
InstanceList validationSet,
Pipe confidencePredictingPipe)
|
|
FeatureSelectingClassifierTrainer(ClassifierTrainer underlyingTrainer,
FeatureSelector featureSelector)
|
Uses of ClassifierTrainer in cc.mallet.pipe |
---|
Constructors in cc.mallet.pipe with parameters of type ClassifierTrainer | |
---|---|
AddClassifierTokenPredictions.TokenClassifiers(ClassifierTrainer trainer,
InstanceList trainList,
int randSeed,
int numCV)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |