|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use cc.mallet.classify | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.classify.evaluate | Classes for computing and displaying the quaility of a classification trial, including accuracy, precision, and confusion matrix. |
cc.mallet.cluster.neighbor_evaluator | |
cc.mallet.fst.confidence | |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
cc.mallet.share.upenn | Utilities that currently include a command line wrapper for the maxent classifier. |
cc.mallet.topics | |
cc.mallet.types | Fundamental MALLET types, including FeatureVector, Instance, Label etc. |
Classes in cc.mallet.classify used by cc.mallet.classify | |
---|---|
AdaBoost
AdaBoost Robert E. |
|
AdaBoostM2
AdaBoostM2 |
|
BaggingClassifier
|
|
BalancedWinnow
Classification methods of BalancedWinnow algorithm. |
|
Boostable
This interface is a tag indicating that the classifier attends to the InstanceList.getInstanceWeight() weights when training. |
|
C45
A C4.5 Decision Tree classifier. |
|
C45.Node
|
|
Classification
The result of classifying a single instance. |
|
Classifier
Abstract parent of all Classifiers. |
|
ClassifierEnsemble
Classifer for an ensemble of classifers, combined with learned weights. |
|
ClassifierEvaluator
|
|
ClassifierTrainer
Each ClassifierTrainer trains one Classifier based on various interfaces for consuming training data. |
|
ClassifierTrainer.ByIncrements
For various kinds of online learning by batches, where training instances are presented, consumed for learning immediately. |
|
ClassifierTrainer.ByInstanceIncrements
For online learning that can operate on one instance at a time. |
|
ClassifierTrainer.ByOptimization
|
|
ClassifierTrainer.Factory
Instances of a Factory know how to create new ClassifierTrainers to apply to new Classifiers. |
|
ConfidencePredictingClassifier
|
|
DecisionTree
Decision Tree classifier. |
|
DecisionTree.Node
|
|
DecisionTreeTrainer
A decision tree learner, roughly ID3, but only to a fixed given depth in all branches. |
|
MaxEnt
Maximum Entropy (AKA Multivariate Logistic Regression) classifier. |
|
MaxEntOptimizableByLabelDistribution
|
|
MaxEntOptimizableByLabelLikelihood
|
|
MaxEntTrainer
The trainer for a Maximum Entropy classifier. |
|
MCMaxEnt
Maximum Entropy classifier. |
|
MCMaxEntTrainer
The trainer for a Maximum Entropy classifier. |
|
NaiveBayes
A classifier that classifies instances according to the NaiveBayes method. |
|
NaiveBayesTrainer
Class used to generate a NaiveBayes classifier from a set of training data. |
|
NaiveBayesTrainer.Factory
|
|
PRAuxClassifier
Auxiliary model (q) for E-step/I-projection in PR training. |
|
Winnow
Classification methods of Winnow2 algorithm. |
Classes in cc.mallet.classify used by cc.mallet.classify.evaluate | |
---|---|
Classifier
Abstract parent of all Classifiers. |
|
Trial
Stores the results of classifying a collection of Instances, and provides many methods for evaluating the results. |
Classes in cc.mallet.classify used by cc.mallet.cluster.neighbor_evaluator | |
---|---|
Classifier
Abstract parent of all Classifiers. |
Classes in cc.mallet.classify used by cc.mallet.fst.confidence | |
---|---|
MaxEnt
Maximum Entropy (AKA Multivariate Logistic Regression) classifier. |
Classes in cc.mallet.classify used by cc.mallet.pipe | |
---|---|
Classification
The result of classifying a single instance. |
|
Classifier
Abstract parent of all Classifiers. |
|
ClassifierTrainer
Each ClassifierTrainer trains one Classifier based on various interfaces for consuming training data. |
Classes in cc.mallet.classify used by cc.mallet.share.upenn | |
---|---|
Classification
The result of classifying a single instance. |
|
Classifier
Abstract parent of all Classifiers. |
Classes in cc.mallet.classify used by cc.mallet.topics | |
---|---|
MaxEnt
Maximum Entropy (AKA Multivariate Logistic Regression) classifier. |
Classes in cc.mallet.classify used by cc.mallet.types | |
---|---|
Classification
The result of classifying a single instance. |
|
Trial
Stores the results of classifying a collection of Instances, and provides many methods for evaluating the results. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |