|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Variable | |
---|---|
cc.mallet.grmm.inference | |
cc.mallet.grmm.inference.gbp | |
cc.mallet.grmm.learning | |
cc.mallet.grmm.types | |
cc.mallet.grmm.util |
Uses of Variable in cc.mallet.grmm.inference |
---|
Methods in cc.mallet.grmm.inference that return Variable | |
---|---|
Variable |
JunctionTreeInferencer.pickVertexToRemove(org._3pq.jgrapht.UndirectedGraph mdl,
java.util.ArrayList lst)
|
Methods in cc.mallet.grmm.inference with parameters of type Variable | |
---|---|
VarSet |
JunctionTree.findCluster(Variable[] vars)
Returns a cluster in the tree that contains exactly the given variables, or null if no such cluster exists. |
VarSet |
JunctionTree.findParentCluster(Variable var)
Returns a cluster in the tree that contains var. |
Factor |
MessageArray.get(Factor from,
Variable to)
|
Factor |
MessageArray.get(Variable from,
Factor to)
|
int |
MessageArray.getIndex(Variable to)
|
static double |
Utils.localMagnetization(Inferencer inferencer,
Variable var)
|
Factor |
VariableElimination.lookupMarginal(Variable var)
|
Factor |
SamplingInferencer.lookupMarginal(Variable var)
|
Factor |
JunctionTreeInferencer.lookupMarginal(Variable var)
|
Factor |
JunctionTree.lookupMarginal(Variable var)
|
Factor |
Inferencer.lookupMarginal(Variable v)
Returns the computed marginal of a given variable. |
Factor |
BruteForceInferencer.lookupMarginal(Variable var)
|
abstract Factor |
AbstractInferencer.lookupMarginal(Variable variable)
|
Factor |
AbstractBeliefPropagation.lookupMarginal(Variable var)
|
void |
MessageArray.put(Factor from,
Variable to,
Factor msg)
|
void |
MessageArray.put(Variable from,
Factor to,
Factor msg)
|
Factor |
TRP.query(DirectedModel m,
Variable var)
|
static TableFactor |
RandomGraphs.randomNodePotential(java.util.Random r,
Variable var)
|
protected void |
AbstractBeliefPropagation.sendMessage(FactorGraph mdl,
Factor from,
Variable to)
|
void |
AbstractBeliefPropagation.MessageStrategy.sendMessage(FactorGraph mdl,
Factor from,
Variable to)
|
void |
AbstractBeliefPropagation.SumProductMessageStrategy.sendMessage(FactorGraph mdl,
Factor from,
Variable to)
|
void |
AbstractBeliefPropagation.MaxProductMessageStrategy.sendMessage(FactorGraph mdl,
Factor from,
Variable to)
|
protected void |
AbstractBeliefPropagation.sendMessage(FactorGraph mdl,
Variable from,
Factor to)
|
void |
AbstractBeliefPropagation.MessageStrategy.sendMessage(FactorGraph mdl,
Variable from,
Factor to)
|
void |
AbstractBeliefPropagation.SumProductMessageStrategy.sendMessage(FactorGraph mdl,
Variable from,
Factor to)
|
void |
AbstractBeliefPropagation.MaxProductMessageStrategy.sendMessage(FactorGraph mdl,
Variable from,
Factor to)
|
static int[] |
Utils.toSizesArray(Variable[] vars)
|
Factor |
VariableElimination.unnormalizedMarginal(FactorGraph model,
Variable query)
The bulk of the variable-elimination algorithm. |
Uses of Variable in cc.mallet.grmm.inference.gbp |
---|
Methods in cc.mallet.grmm.inference.gbp with parameters of type Variable | |
---|---|
Factor |
ParentChildGBP.lookupMarginal(Variable variable)
|
Uses of Variable in cc.mallet.grmm.learning |
---|
Methods in cc.mallet.grmm.learning that return Variable | |
---|---|
Variable |
ACRF.UnrolledGraph.get(int idx)
|
Variable |
ACRF.UnrolledGraph.varOfIndex(int t,
int j)
|
Methods in cc.mallet.grmm.learning with parameters of type Variable | |
---|---|
int |
ACRF.UnrolledGraph.getIndex(Variable var)
|
int |
ACRF.UnrolledGraph.observedValue(Variable var)
|
void |
ACRF.UnrolledGraph.setObserved(Variable var,
int outcome)
|
Constructors in cc.mallet.grmm.learning with parameters of type Variable | |
---|---|
ACRF.UnrolledVarSet(ACRF.UnrolledGraph graph,
ACRF.Template tmpl,
Variable[] vars,
FeatureVector fv)
|
Uses of Variable in cc.mallet.grmm.types |
---|
Methods in cc.mallet.grmm.types that return Variable | |
---|---|
static Variable[] |
Factors.computeVars(Factor result)
|
static Variable[] |
Factors.continuousVarsOf(Factor fg)
|
static Variable[] |
Factors.discreteVarsOf(Factor fg)
|
Variable |
FactorGraph.findVariable(java.lang.String name)
Searches this model for a variable with a given name. |
Variable |
AbstractTableFactor.findVariable(java.lang.String name)
|
Variable |
VarSet.get(int idx)
Returns the variable in this clique at index idx. |
Variable |
UnmodifiableVarSet.get(int idx)
|
Variable |
Universe.get(int idx)
|
Variable |
ListVarSet.get(int idx)
|
Variable |
HashVarSet.get(int idx)
|
Variable |
FactorGraph.get(int index)
Returns a variable from this model with a given index. |
Variable |
BitVarSet.get(int idx)
|
Variable |
UndirectedGrid.get(int x,
int y)
|
Variable |
CPT.getChild()
|
Variable |
FactorGraph.getVariable(int i)
|
Variable |
Factor.getVariable(int i)
|
Variable |
CPT.getVariable(int i)
|
Variable |
Assignment.getVariable(int i)
|
Variable |
AbstractTableFactor.getVariable(int i)
|
Variable |
AbstractFactor.getVariable(int i)
|
Variable[] |
Assignment.getVars()
Returns all variables which are assigned to. |
Variable[] |
VarSet.toVariableArray()
Returns the variables in this clique as an array, that should not be modified. |
Variable[] |
UnmodifiableVarSet.toVariableArray()
|
Variable[] |
ListVarSet.toVariableArray()
|
Variable[] |
HashVarSet.toVariableArray()
|
Variable[] |
BitVarSet.toVariableArray()
|
Methods in cc.mallet.grmm.types with parameters of type Variable | |
---|---|
int |
Universe.add(Variable var)
|
void |
FactorGraph.addFactor(Variable var1,
Variable var2,
double[] probs)
|
void |
Assignment.addRow(Variable[] vars,
double[] values)
|
void |
Assignment.addRow(Variable[] vars,
int[] values)
|
void |
Assignment.addRow(Variable[] vars,
java.lang.Object[] values)
|
java.util.List |
FactorGraph.allFactorsContaining(Variable var)
|
java.util.List |
FactorGraph.allFactorsOf(Variable var)
Returns a list of all factors in the graph whose domain is exactly the specified var. |
boolean |
FactorGraph.containsVar(Variable v1)
Returns whether this variable is part of the model. |
boolean |
Factor.containsVar(Variable var)
Returns whether the potential is over the given variable. |
boolean |
CPT.containsVar(Variable var)
|
boolean |
Assignment.containsVar(Variable var)
Returns true if this assignment specifies a value for var |
boolean |
AbstractTableFactor.containsVar(Variable var)
Returns true iff this potential is over the given variable |
boolean |
AbstractFactor.containsVar(Variable var)
|
protected AbstractTableFactor |
TableFactor.createBlankSubset(Variable[] vars)
|
protected AbstractTableFactor |
LogTableFactor.createBlankSubset(Variable[] vars)
|
protected abstract AbstractTableFactor |
AbstractTableFactor.createBlankSubset(Variable[] vars)
|
Factor |
FactorGraph.extractMax(Variable var)
|
Factor |
Factor.extractMax(Variable var)
Returns a potential phi over the given variables obtained by taking phi (x) = max_[all v that contain x] this.prob (x) |
Factor |
CPT.extractMax(Variable var)
|
Factor |
AbstractTableFactor.extractMax(Variable var)
|
Factor |
AbstractFactor.extractMax(Variable var)
|
Factor |
FactorGraph.extractMax(Variable[] vars)
|
Factor |
Factor.extractMax(Variable[] vars)
Returns a potential phi over the given variables obtained by taking phi (x) = max_[all v that contain x] this.prob (x) |
Factor |
CPT.extractMax(Variable[] vars)
|
Factor |
AbstractTableFactor.extractMax(Variable[] vars)
|
Factor |
AbstractFactor.extractMax(Variable[] vars)
|
Factor |
FactorGraph.factorOf(Variable var)
Returns the factor for a given node. |
Factor |
FactorGraph.factorOf(Variable var1,
Variable var2)
Returns the factor defined over a given pair of variables. |
int |
Assignment.get(int ridx,
Variable var)
Returns the value of var in this assigment. |
int |
Assignment.get(Variable var)
|
VarSet |
FactorGraph.getAdjacentVertices(Variable var)
Returns all variables that are adjacent to a given variable in this graph---that is, the set of all variables that share a factor with this one. |
int[] |
Assignment.getColumnInt(Variable x1)
|
CPT |
DirectedModel.getCptofVar(Variable node)
Returns the conditional distribution P ( node | Parents (node) ) |
int |
FactorGraph.getDegree(Variable var)
Returns the degree of a given variable in this factor graph, that is, the number of factors in which the variable is an argument. |
double |
Assignment.getDouble(int ridx,
Variable var)
Returns the value of var in this assigment. |
double |
Assignment.getDouble(Variable var)
|
int |
Universe.getIndex(Variable var)
|
int |
FactorGraph.getIndex(Variable var)
Returns a unique numeric index for a variable in this model. |
java.lang.Object |
Assignment.getObject(int ri,
Variable var)
|
java.lang.Object |
Assignment.getObject(Variable var)
|
boolean |
FactorGraph.isAdjacent(Variable v1,
Variable v2)
Returns whether two variables are adjacent in the model's graph. |
boolean |
UndirectedModel.isConnected(Variable v1,
Variable v2)
|
static LogTableFactor |
LogTableFactor.makeFromLogMatrix(Variable[] vars,
Matrix values)
|
static LogTableFactor |
LogTableFactor.makeFromLogValues(Variable[] vars,
double[] vals)
|
static LogTableFactor |
LogTableFactor.makeFromLogValues(Variable v,
double[] vals)
|
static LogTableFactor |
LogTableFactor.makeFromMatrix(Variable[] vars,
SparseMatrixn values)
|
static LogTableFactor |
LogTableFactor.makeFromValues(Variable[] vars,
double[] vals)
|
static LogTableFactor |
LogTableFactor.makeFromValues(Variable var,
double[] vals2)
|
Factor |
FactorGraph.marginalize(Variable var)
|
Factor |
Factor.marginalize(Variable var)
Returns the marginal of this distribution over one variable. |
Factor |
CPT.marginalize(Variable var)
|
Factor |
AbstractTableFactor.marginalize(Variable var)
|
Factor |
AbstractFactor.marginalize(Variable var)
|
Factor |
FactorGraph.marginalize(Variable[] vars)
|
Factor |
Factor.marginalize(Variable[] vars)
Returns the marginal of this distribution over the given variables. |
Factor |
CPT.marginalize(Variable[] vars)
|
Factor |
AbstractTableFactor.marginalize(Variable[] vars)
Returns the marginal of this distribution over the given variables. |
Factor |
AbstractFactor.marginalize(Variable[] vars)
|
Factor |
FactorGraph.marginalizeOut(Variable var)
|
Factor |
Factor.marginalizeOut(Variable var)
Returns the marginal distribution attained by summing out the given variable. |
Factor |
CPT.marginalizeOut(Variable var)
|
Factor |
AbstractTableFactor.marginalizeOut(Variable var)
|
Factor |
AbstractFactor.marginalizeOut(Variable var)
|
static CPT |
Factors.normalizeAsCpt(AbstractTableFactor ptl,
Variable var)
|
void |
FactorGraph.remove(Variable var)
Removes a variable from this model, along with all of its factors. |
double |
PottsTableFactor.secondDerivative(Factor q,
Variable param,
Assignment theta)
|
void |
Assignment.setDouble(int ridx,
Variable var,
double value)
|
void |
Assignment.setValue(int ridx,
Variable var,
int value)
|
void |
Assignment.setValue(Variable var,
int value)
|
protected Factor |
TableFactor.slice_general(Variable[] vars,
Assignment observed)
|
protected Factor |
LogTableFactor.slice_general(Variable[] vars,
Assignment observed)
|
protected abstract Factor |
AbstractTableFactor.slice_general(Variable[] vars,
Assignment observed)
|
protected Factor |
TableFactor.slice_onevar(Variable var,
Assignment observed)
Creates a new potential from another by restricting it to a given assignment. |
protected Factor |
LogTableFactor.slice_onevar(Variable var,
Assignment observed)
|
protected abstract Factor |
AbstractTableFactor.slice_onevar(Variable var,
Assignment observed)
|
protected Factor |
TableFactor.slice_twovar(Variable v1,
Variable v2,
Assignment observed)
|
protected Factor |
LogTableFactor.slice_twovar(Variable v1,
Variable v2,
Assignment observed)
|
protected abstract Factor |
AbstractTableFactor.slice_twovar(Variable v1,
Variable v2,
Assignment observed)
|
double |
PottsTableFactor.sumGradLog(Factor q,
Variable param,
Assignment theta)
|
double |
ParameterizedFactor.sumGradLog(Factor q,
Variable param,
Assignment assn)
Computes the expected derivative of the log factor value. |
double |
BinaryUnaryFactor.sumGradLog(Factor q,
Variable param,
Assignment paramAssn)
|
Constructors in cc.mallet.grmm.types with parameters of type Variable | |
---|---|
AbstractTableFactor(Variable var)
Creates an identity potential over the given variable. |
|
AbstractTableFactor(Variable[] allVars)
Creates an identity potential with the given variables. |
|
AbstractTableFactor(Variable[] allVars,
double[] probs)
Creates a potential with the given variables and the given probabilities. |
|
AbstractTableFactor(Variable[] allVars,
Matrix probsIn)
Creates a potential with the given variables and the given probabilities. |
|
AbstractTableFactor(Variable var,
double[] values)
|
|
Assignment(Variable[] vars,
double[] outcomes)
Creates an assignemnt for the given variables. |
|
Assignment(Variable[] vars,
int[] outcomes)
Creates an assignemnt for the given variables. |
|
Assignment(Variable var,
double outcome)
|
|
Assignment(Variable var,
int outcome)
|
|
BetaFactor(Variable var,
double alpha,
double beta)
|
|
BetaFactor(Variable var,
double alpha,
double beta,
double min,
double max)
|
|
BinaryUnaryFactor(Variable var,
Variable theta1,
Variable theta2)
|
|
BoltzmannPairFactor(Variable x1,
Variable x2,
double sigma)
|
|
BoltzmannUnaryFactor(Variable var,
double theta)
|
|
CPT(DiscreteFactor subFactor,
Variable child)
|
|
DirectedModel(Variable[] vars)
|
|
FactorGraph(Variable[] vars)
Create a model with the variables given. |
|
HashVarSet(Variable[] vars)
|
|
LogTableFactor(Variable var)
|
|
LogTableFactor(Variable[] allVars)
|
|
PottsTableFactor(Variable x1,
Variable x2,
Variable alpha)
|
|
PottsTableFactor(VarSet xs,
Variable alpha)
|
|
TableFactor(Variable var)
|
|
TableFactor(Variable[] allVars)
|
|
TableFactor(Variable[] allVars,
double[] probs)
|
|
TableFactor(Variable[] allVars,
Matrix probsIn)
|
|
TableFactor(Variable var,
double[] values)
|
|
UndirectedModel(Variable[] vars)
|
|
UniformFactor(Variable var,
double min,
double max)
|
|
UniformFactor(Variable var,
double min,
double max,
double val)
|
|
UniNormalFactor(Variable var,
double mean,
double variance)
|
Uses of Variable in cc.mallet.grmm.util |
---|
Methods in cc.mallet.grmm.util that return Variable | |
---|---|
Variable |
LabelsAssignment.varOfIndex(int t,
int j)
|
Methods in cc.mallet.grmm.util with parameters of type Variable | |
---|---|
Label |
LabelsAssignment.labelOfVar(Variable var)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |