|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Instance | |
---|---|
cc.mallet.classify | Classes for training and classifying instances. |
cc.mallet.cluster.iterator | |
cc.mallet.cluster.tui | |
cc.mallet.cluster.util | |
cc.mallet.extract | Unimplemented. |
cc.mallet.extract.pipe | |
cc.mallet.fst | Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.fst.confidence | |
cc.mallet.fst.tests | Tests for Transducers, including Conditional Random Fields (CRFs). |
cc.mallet.grmm.learning | |
cc.mallet.grmm.learning.extract | |
cc.mallet.grmm.util | |
cc.mallet.pipe | Classes for processing arbitrary data into instances. |
cc.mallet.pipe.iterator | Classes that generate instances from different kinds of input or data structures. |
cc.mallet.pipe.tests | JUnit tests for pipes. |
cc.mallet.pipe.tsf | TokenSequenceFeature Pipes. |
cc.mallet.share.casutton.ner | |
cc.mallet.share.mccallum.ner | Named entity recognizer. |
cc.mallet.share.upenn | Utilities that currently include a command line wrapper for the maxent classifier. |
cc.mallet.share.upenn.ner | |
cc.mallet.share.weili.ner.enron | |
cc.mallet.topics | |
cc.mallet.types | Fundamental MALLET types, including FeatureVector, Instance, Label etc. |
Uses of Instance in cc.mallet.classify |
---|
Methods in cc.mallet.classify that return Instance | |
---|---|
Instance |
Classification.getInstance()
|
Instance |
Classification.toInstance()
|
Methods in cc.mallet.classify with parameters of type Instance | |
---|---|
Classification |
Winnow.classify(Instance instance)
Classifies an instance using Winnow's weights |
Classification |
RankMaxEnt.classify(Instance instance)
|
Classification |
PRAuxClassifier.classify(Instance instance)
|
Classification |
NaiveBayes.classify(Instance instance)
Classify an instance using NaiveBayes according to the trained data. |
Classification |
MCMaxEnt.classify(Instance instance)
|
Classification |
MaxEnt.classify(Instance instance)
|
Classification |
DecisionTree.classify(Instance instance)
|
Classification |
ConfidencePredictingClassifier.classify(Instance instance)
|
Classification |
ClassifierEnsemble.classify(Instance instance)
|
abstract Classification |
Classifier.classify(Instance instance)
|
Classification |
C45.classify(Instance instance)
|
Classification |
BalancedWinnow.classify(Instance instance)
Classifies an instance using BalancedWinnow's weights |
Classification |
BaggingClassifier.classify(Instance inst)
|
Classification |
AdaBoostM2.classify(Instance inst)
|
Classification |
AdaBoost.classify(Instance inst)
|
Classification[] |
Classifier.classify(Instance[] instances)
|
Classification |
AdaBoostM2.classify(Instance inst,
int numWeakClassifiersToUse)
Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting |
Classification |
AdaBoost.classify(Instance inst,
int numWeakClassifiersToUse)
Classify the given instance using only the first numWeakClassifiersToUse classifiers trained during boosting |
void |
PRAuxClassifier.getClassificationProbs(Instance instance,
double[] scores)
|
void |
RankMaxEnt.getClassificationScores(Instance instance,
double[] scores)
|
void |
PRAuxClassifier.getClassificationScores(Instance instance,
double[] scores)
|
void |
MCMaxEnt.getClassificationScores(Instance instance,
double[] scores)
|
void |
MaxEnt.getClassificationScores(Instance instance,
double[] scores)
|
void |
RankMaxEnt.getClassificationScoresForTies(Instance instance,
double[] scores,
int[] bestLabels)
Used by RankMaxEntTrainer to calculate the value when the labeling contains ties. |
void |
MaxEnt.getClassificationScoresWithTemperature(Instance instance,
double temperature,
double[] scores)
|
void |
RankMaxEnt.getUnnormalizedClassificationScores(Instance instance,
double[] scores)
returns unnormalized scores, corresponding to the score an element of the InstanceList being the "top" instance |
void |
MCMaxEnt.getUnnormalizedClassificationScores(Instance instance,
double[] scores)
|
void |
MaxEnt.getUnnormalizedClassificationScores(Instance instance,
double[] scores)
|
NaiveBayes |
NaiveBayesTrainer.trainIncremental(Instance instance)
|
C |
ClassifierTrainer.ByInstanceIncrements.trainIncremental(Instance instanceToAdd)
|
Constructors in cc.mallet.classify with parameters of type Instance | |
---|---|
Classification(Instance instance,
Classifier classifier,
Labeling labeling)
|
Uses of Instance in cc.mallet.cluster.iterator |
---|
Methods in cc.mallet.cluster.iterator that return Instance | |
---|---|
Instance |
PairSampleIterator.next()
|
Instance |
NodeClusterSampleIterator.next()
|
Instance |
ClusterSampleIterator.next()
|
Instance |
AllPairsIterator.next()
|
Uses of Instance in cc.mallet.cluster.tui |
---|
Methods in cc.mallet.cluster.tui that return Instance | |
---|---|
Instance |
Clusterings2Clusterer.ClusteringPipe.pipe(Instance carrier)
|
Methods in cc.mallet.cluster.tui with parameters of type Instance | |
---|---|
Instance |
Clusterings2Clusterer.ClusteringPipe.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.cluster.util |
---|
Methods in cc.mallet.cluster.util with parameters of type Instance | |
---|---|
static InstanceList |
ClusterUtils.makeList(Instance i,
Instance j)
|
Uses of Instance in cc.mallet.extract |
---|
Method parameters in cc.mallet.extract with type arguments of type Instance | |
---|---|
Extraction |
Extractor.extract(java.util.Iterator<Instance> source)
Performs extraction on a a set of raw documents. |
Extraction |
CRFExtractor.extract(java.util.Iterator<Instance> source)
|
InstanceList |
CRFExtractor.pipeInstances(java.util.Iterator<Instance> source)
|
Uses of Instance in cc.mallet.extract.pipe |
---|
Methods in cc.mallet.extract.pipe that return Instance | |
---|---|
Instance |
TokenSequence2Tokenization.pipe(Instance carrier)
|
Methods in cc.mallet.extract.pipe with parameters of type Instance | |
---|---|
Instance |
TokenSequence2Tokenization.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.fst |
---|
Methods in cc.mallet.fst that return Instance | |
---|---|
Instance |
Transducer.label(Instance instance)
Take input sequence from instance.data and put the output sequence in instance.target. |
Instance |
SimpleTagger.SimpleTaggerSentence2FeatureVectorSequence.pipe(Instance carrier)
|
Instance |
Transducer.transduce(Instance instance)
Take input sequence from instance.data and put the output sequence in instance.data. |
Methods in cc.mallet.fst with parameters of type Instance | |
---|---|
Instance |
Transducer.label(Instance instance)
Take input sequence from instance.data and put the output sequence in instance.target. |
Instance |
SimpleTagger.SimpleTaggerSentence2FeatureVectorSequence.pipe(Instance carrier)
|
abstract boolean |
TransducerTrainer.ByInstanceIncrements.trainIncremental(Instance trainingInstance)
|
boolean |
CRFTrainerByStochasticGradient.trainIncremental(Instance trainingInstance)
|
double |
CRFTrainerByStochasticGradient.trainIncrementalLikelihood(Instance trainingInstance)
Adjust the parameters by default learning rate according to the gradient of this single Instance, and return the true label sequence likelihood. |
double |
CRFTrainerByStochasticGradient.trainIncrementalLikelihood(Instance trainingInstance,
double rate)
Adjust the parameters by learning rate according to the gradient of this single Instance, and return the true label sequence likelihood. |
Instance |
Transducer.transduce(Instance instance)
Take input sequence from instance.data and put the output sequence in instance.data. |
Uses of Instance in cc.mallet.fst.confidence |
---|
Methods in cc.mallet.fst.confidence that return Instance | |
---|---|
Instance |
SequenceConfidenceInstance.getInstance()
|
Instance |
PipedInstanceWithConfidence.getInstance()
|
Instance |
InstanceWithConfidence.getInstance()
|
Methods in cc.mallet.fst.confidence with parameters of type Instance | |
---|---|
double |
ViterbiRatioConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of an Instance . |
double |
ViterbiConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Instance . |
abstract double |
TransducerSequenceConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Sequence . |
double |
SegmentProductConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Instance . |
double |
RandomSequenceConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of an Instance . |
double |
QBCSequenceConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Instance . |
double |
NBestViterbiConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Instance . |
double |
MinSegmentConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of a Instance . |
double |
MaxEntSequenceConfidenceEstimator.estimateConfidenceFor(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags)
Calculates the confidence in the tagging of an Instance . |
Segment[] |
TransducerConfidenceEstimator.rankSegmentsByConfidence(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] continueTags)
ranks the segments in one Instance |
Constructors in cc.mallet.fst.confidence with parameters of type Instance | |
---|---|
InstanceWithConfidence(Instance inst,
double c,
boolean correct)
|
|
InstanceWithConfidence(Instance inst,
double c,
Sequence predicted)
|
|
PipedInstanceWithConfidence(Instance inst,
double c,
boolean correct)
|
|
SequenceConfidenceInstance(Instance inst)
|
Uses of Instance in cc.mallet.fst.tests |
---|
Methods in cc.mallet.fst.tests that return Instance | |
---|---|
Instance |
TestMEMM.TestMEMMTokenSequenceRemoveSpaces.pipe(Instance carrier)
|
Instance |
TestMEMM.TestMEMM2String.pipe(Instance carrier)
|
Instance |
TestCRF.TestCRFTokenSequenceRemoveSpaces.pipe(Instance carrier)
|
Instance |
TestCRF.TestCRF2String.pipe(Instance carrier)
|
Methods in cc.mallet.fst.tests with parameters of type Instance | |
---|---|
Instance |
TestMEMM.TestMEMMTokenSequenceRemoveSpaces.pipe(Instance carrier)
|
Instance |
TestMEMM.TestMEMM2String.pipe(Instance carrier)
|
Instance |
TestCRF.TestCRFTokenSequenceRemoveSpaces.pipe(Instance carrier)
|
Instance |
TestCRF.TestCRF2String.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.grmm.learning |
---|
Methods in cc.mallet.grmm.learning that return Instance | |
---|---|
Instance |
GenericAcrfData2TokenSequence.pipe(Instance carrier)
|
Methods in cc.mallet.grmm.learning with parameters of type Instance | |
---|---|
abstract void |
ACRF.Template.addInstantiatedCliques(ACRF.UnrolledGraph graph,
Instance instance)
Adds all instiated cliques for an instance. |
void |
ACRF.SequenceTemplate.addInstantiatedCliques(ACRF.UnrolledGraph graph,
Instance instance)
|
Assignment |
ACRF.bestAssignment(Instance inst)
|
LabelsSequence |
ACRF.getBestLabels(Instance inst)
|
Instance |
GenericAcrfData2TokenSequence.pipe(Instance carrier)
|
void |
ACRF.GraphPostProcessor.process(ACRF.UnrolledGraph graph,
Instance inst)
|
ACRF.UnrolledGraph |
ACRF.unroll(Instance inst)
|
ACRF.UnrolledGraph |
ACRF.unrollStructureOnly(Instance inst)
|
Constructors in cc.mallet.grmm.learning with parameters of type Instance | |
---|---|
ACRF.UnrolledGraph(Instance inst,
ACRF.Template[] templates,
ACRF.Template[] fixed)
|
|
ACRF.UnrolledGraph(Instance inst,
ACRF.Template[] templates,
java.util.List fixed,
boolean setupPotentials)
Creates a graphical model for a given instance. |
Uses of Instance in cc.mallet.grmm.learning.extract |
---|
Method parameters in cc.mallet.grmm.learning.extract with type arguments of type Instance | |
---|---|
Extraction |
ACRFExtractor.extract(java.util.Iterator<Instance> source)
|
ACRFExtractorTrainer |
ACRFExtractorTrainer.setDataSource(java.util.Iterator<Instance> trainIterator,
java.util.Iterator<Instance> testIterator)
|
ACRFExtractorTrainer |
ACRFExtractorTrainer.setDataSource(java.util.Iterator<Instance> trainIterator,
java.util.Iterator<Instance> testIterator)
|
Uses of Instance in cc.mallet.grmm.util |
---|
Methods in cc.mallet.grmm.util that return Instance | |
---|---|
Instance |
PipedIterator.next()
Deprecated. |
Instance |
SliceLabelsSequence.pipe(Instance carrier)
|
Instance |
RememberTokenizationPipe.pipe(Instance carrier)
|
Instance |
LabelsSequence2Assignment.pipe(Instance carrier)
|
Methods in cc.mallet.grmm.util with parameters of type Instance | |
---|---|
Instance |
SliceLabelsSequence.pipe(Instance carrier)
|
Instance |
RememberTokenizationPipe.pipe(Instance carrier)
|
Instance |
LabelsSequence2Assignment.pipe(Instance carrier)
|
Constructor parameters in cc.mallet.grmm.util with type arguments of type Instance | |
---|---|
PipedIterator(java.util.Iterator<Instance> subIt,
Pipe pipe)
Deprecated. |
Uses of Instance in cc.mallet.pipe |
---|
Methods in cc.mallet.pipe that return Instance | |
---|---|
Instance |
Pipe.instanceFrom(Instance inst)
|
Instance[] |
Pipe.instancesFrom(Instance inst)
|
Instance[] |
Pipe.instancesFrom(java.util.Iterator<Instance> source)
A convenience method that will pull all instances from source through this pipe, and return the results as an array. |
Instance |
TokenSequenceRemoveStopwords.pipe(Instance carrier)
|
Instance |
TokenSequenceRemoveNonAlpha.pipe(Instance carrier)
|
Instance |
TokenSequenceParseFeatureString.pipe(Instance carrier)
|
Instance |
TokenSequenceNGrams.pipe(Instance carrier)
|
Instance |
TokenSequenceMatchDataAndTarget.pipe(Instance carrier)
|
Instance |
TokenSequenceLowercase.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureVectorSequence.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureSequenceWithBigrams.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureSequence.pipe(Instance carrier)
|
Instance |
Token2FeatureVector.pipe(Instance carrier)
|
Instance |
TargetStringToFeatures.pipe(Instance carrier)
|
Instance |
TargetRememberLastLabel.pipe(Instance carrier)
|
Instance |
Target2LabelSequence.pipe(Instance carrier)
|
Instance |
Target2Label.pipe(Instance carrier)
|
Instance |
Target2FeatureSequence.pipe(Instance carrier)
|
Instance |
SvmLight2FeatureVectorAndLabel.pipe(Instance carrier)
|
Instance |
StringList2FeatureSequence.pipe(Instance carrier)
|
Instance |
StringAddNewLineDelimiter.pipe(Instance carrier)
|
Instance |
SourceLocation2TokenSequence.pipe(Instance carrier)
|
Instance |
SimpleTokenizer.pipe(Instance instance)
|
Instance |
SimpleTaggerSentence2TokenSequence.pipe(Instance carrier)
Takes an instance with data of type String or String[][] and creates an Instance of type TokenSequence. |
Instance |
SimpleTaggerSentence2StringTokenization.pipe(Instance carrier)
Takes an instance with data of type String or String[][] and creates an Instance of type StringTokenization. |
Instance |
SGML2TokenSequence.pipe(Instance carrier)
|
Instance |
SelectiveSGML2TokenSequence.pipe(Instance carrier)
|
Instance |
SaveDataInSource.pipe(Instance carrier)
|
Instance |
PrintTokenSequenceFeatures.pipe(Instance carrier)
|
Instance |
PrintInputAndTarget.pipe(Instance carrier)
|
Instance |
PrintInput.pipe(Instance carrier)
|
Instance |
Pipe.pipe(Instance inst)
Really this should be 'protected', but isn't for historical reasons. |
Instance |
Noop.pipe(Instance carrier)
|
Instance |
MakeAmpersandXMLFriendly.pipe(Instance carrier)
|
Instance |
LineGroupString2TokenSequence.pipe(Instance carrier)
|
Instance |
InstanceListTrimFeaturesByCount.pipe(Instance carrier)
|
Instance |
Input2CharSequence.pipe(Instance carrier)
|
Instance |
Filename2CharSequence.pipe(Instance carrier)
|
Instance |
FeatureVectorConjunctions.pipe(Instance carrier)
|
Instance |
FeatureValueString2FeatureVector.pipe(Instance carrier)
|
Instance |
FeatureSequenceConvolution.pipe(Instance carrier)
construct word co-occurrence features from the original sequence do combinatoric, n choose 2, can be extended to n choose 3 public void convolution() { int fi = -1; int pre = -1; int i,j; int curLen = length; for(i = 0; i < curLen-1; i++) { for(j = i + 1; j < curLen; j++) { pre = features[i]; fi = features[j]; Object preO = dictionary.lookupObject(pre); Object curO = dictionary.lookupObject(fi); Object coO = preO.toString() + "_" + curO.toString(); add(coO); } } } |
Instance |
FeatureSequence2FeatureVector.pipe(Instance carrier)
|
Instance |
FeatureSequence2AugmentableFeatureVector.pipe(Instance carrier)
|
Instance |
FeatureDocFreqPipe.pipe(Instance instance)
|
Instance |
FeatureCountPipe.pipe(Instance instance)
|
Instance |
Directory2FileIterator.pipe(Instance carrier)
|
Instance |
Csv2FeatureVector.pipe(Instance carrier)
Convert the data in the given Instance from a CharSequence of sparse feature-value pairs to a FeatureVector |
Instance |
Csv2Array.pipe(Instance carrier)
Convert the data in an Instance from a CharSequence
of comma-separated-values to an array, where each index is the
feature name. |
Instance |
Classification2ConfidencePredictingFeatureVector.pipe(Instance carrier)
|
Instance |
CharSubsequence.pipe(Instance carrier)
|
Instance |
CharSequenceReplace.pipe(Instance carrier)
|
Instance |
CharSequenceRemoveUUEncodedBlocks.pipe(Instance carrier)
|
Instance |
CharSequenceRemoveHTML.pipe(Instance carrier)
|
Instance |
CharSequenceLowercase.pipe(Instance carrier)
|
Instance |
CharSequenceArray2TokenSequence.pipe(Instance carrier)
|
Instance |
CharSequence2TokenSequence.pipe(Instance carrier)
|
Instance |
CharSequence2CharNGrams.pipe(Instance carrier)
|
Instance |
AugmentableFeatureVectorLogScale.pipe(Instance carrier)
|
Instance |
AugmentableFeatureVectorAddConjunctions.pipe(Instance carrier)
|
Instance |
Array2FeatureVector.pipe(Instance carrier)
Convert the data in an Instance from an array to a
FeatureVector leaving other fields unchanged. |
Instance |
AddClassifierTokenPredictions.pipe(Instance carrier)
Add the token classifier's predictions as features to the instance. |
Methods in cc.mallet.pipe that return types with arguments of type Instance | |
---|---|
java.util.Iterator<Instance> |
TokenSequence2TokenInstances.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
SerialPipes.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
Pipe.newIteratorFrom(java.util.Iterator<Instance> source)
Given an InstanceIterator, return a new InstanceIterator whose instances have also been processed by this pipe. |
java.util.Iterator<Instance> |
FilterEmptyFeatureVectors.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
FeatureVectorSequence2FeatureVectors.newIteratorFrom(java.util.Iterator<Instance> inputIterator)
|
java.util.Iterator<Instance> |
BranchingPipe.newIteratorFrom(java.util.Iterator<Instance> source)
Deprecated. |
Methods in cc.mallet.pipe with parameters of type Instance | |
---|---|
Classification |
AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance)
|
Classification |
AddClassifierTokenPredictions.TokenClassifiers.classify(Instance instance,
boolean useOutOfFold)
|
static InstanceList |
AddClassifierTokenPredictions.convert(Instance inst,
Noop alphabetsPipe)
|
Instance |
Pipe.instanceFrom(Instance inst)
|
Instance[] |
Pipe.instancesFrom(Instance inst)
|
Instance |
TokenSequenceRemoveStopwords.pipe(Instance carrier)
|
Instance |
TokenSequenceRemoveNonAlpha.pipe(Instance carrier)
|
Instance |
TokenSequenceParseFeatureString.pipe(Instance carrier)
|
Instance |
TokenSequenceNGrams.pipe(Instance carrier)
|
Instance |
TokenSequenceMatchDataAndTarget.pipe(Instance carrier)
|
Instance |
TokenSequenceLowercase.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureVectorSequence.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureSequenceWithBigrams.pipe(Instance carrier)
|
Instance |
TokenSequence2FeatureSequence.pipe(Instance carrier)
|
Instance |
Token2FeatureVector.pipe(Instance carrier)
|
Instance |
TargetStringToFeatures.pipe(Instance carrier)
|
Instance |
TargetRememberLastLabel.pipe(Instance carrier)
|
Instance |
Target2LabelSequence.pipe(Instance carrier)
|
Instance |
Target2Label.pipe(Instance carrier)
|
Instance |
Target2FeatureSequence.pipe(Instance carrier)
|
Instance |
SvmLight2FeatureVectorAndLabel.pipe(Instance carrier)
|
Instance |
StringList2FeatureSequence.pipe(Instance carrier)
|
Instance |
StringAddNewLineDelimiter.pipe(Instance carrier)
|
Instance |
SourceLocation2TokenSequence.pipe(Instance carrier)
|
Instance |
SimpleTokenizer.pipe(Instance instance)
|
Instance |
SimpleTaggerSentence2TokenSequence.pipe(Instance carrier)
Takes an instance with data of type String or String[][] and creates an Instance of type TokenSequence. |
Instance |
SimpleTaggerSentence2StringTokenization.pipe(Instance carrier)
Takes an instance with data of type String or String[][] and creates an Instance of type StringTokenization. |
Instance |
SGML2TokenSequence.pipe(Instance carrier)
|
Instance |
SelectiveSGML2TokenSequence.pipe(Instance carrier)
|
Instance |
SaveDataInSource.pipe(Instance carrier)
|
Instance |
PrintTokenSequenceFeatures.pipe(Instance carrier)
|
Instance |
PrintInputAndTarget.pipe(Instance carrier)
|
Instance |
PrintInput.pipe(Instance carrier)
|
Instance |
Pipe.pipe(Instance inst)
Really this should be 'protected', but isn't for historical reasons. |
Instance |
Noop.pipe(Instance carrier)
|
Instance |
MakeAmpersandXMLFriendly.pipe(Instance carrier)
|
Instance |
LineGroupString2TokenSequence.pipe(Instance carrier)
|
Instance |
InstanceListTrimFeaturesByCount.pipe(Instance carrier)
|
Instance |
Input2CharSequence.pipe(Instance carrier)
|
Instance |
Filename2CharSequence.pipe(Instance carrier)
|
Instance |
FeatureVectorConjunctions.pipe(Instance carrier)
|
Instance |
FeatureValueString2FeatureVector.pipe(Instance carrier)
|
Instance |
FeatureSequenceConvolution.pipe(Instance carrier)
construct word co-occurrence features from the original sequence do combinatoric, n choose 2, can be extended to n choose 3 public void convolution() { int fi = -1; int pre = -1; int i,j; int curLen = length; for(i = 0; i < curLen-1; i++) { for(j = i + 1; j < curLen; j++) { pre = features[i]; fi = features[j]; Object preO = dictionary.lookupObject(pre); Object curO = dictionary.lookupObject(fi); Object coO = preO.toString() + "_" + curO.toString(); add(coO); } } } |
Instance |
FeatureSequence2FeatureVector.pipe(Instance carrier)
|
Instance |
FeatureSequence2AugmentableFeatureVector.pipe(Instance carrier)
|
Instance |
FeatureDocFreqPipe.pipe(Instance instance)
|
Instance |
FeatureCountPipe.pipe(Instance instance)
|
Instance |
Directory2FileIterator.pipe(Instance carrier)
|
Instance |
Csv2FeatureVector.pipe(Instance carrier)
Convert the data in the given Instance from a CharSequence of sparse feature-value pairs to a FeatureVector |
Instance |
Csv2Array.pipe(Instance carrier)
Convert the data in an Instance from a CharSequence
of comma-separated-values to an array, where each index is the
feature name. |
Instance |
Classification2ConfidencePredictingFeatureVector.pipe(Instance carrier)
|
Instance |
CharSubsequence.pipe(Instance carrier)
|
Instance |
CharSequenceReplace.pipe(Instance carrier)
|
Instance |
CharSequenceRemoveUUEncodedBlocks.pipe(Instance carrier)
|
Instance |
CharSequenceRemoveHTML.pipe(Instance carrier)
|
Instance |
CharSequenceLowercase.pipe(Instance carrier)
|
Instance |
CharSequenceArray2TokenSequence.pipe(Instance carrier)
|
Instance |
CharSequence2TokenSequence.pipe(Instance carrier)
|
Instance |
CharSequence2CharNGrams.pipe(Instance carrier)
|
Instance |
AugmentableFeatureVectorLogScale.pipe(Instance carrier)
|
Instance |
AugmentableFeatureVectorAddConjunctions.pipe(Instance carrier)
|
Instance |
Array2FeatureVector.pipe(Instance carrier)
Convert the data in an Instance from an array to a
FeatureVector leaving other fields unchanged. |
Instance |
AddClassifierTokenPredictions.pipe(Instance carrier)
Add the token classifier's predictions as features to the instance. |
boolean |
Pipe.precondition(Instance inst)
Each instance processed is tested by this method. |
Method parameters in cc.mallet.pipe with type arguments of type Instance | |
---|---|
Instance[] |
Pipe.instancesFrom(java.util.Iterator<Instance> source)
A convenience method that will pull all instances from source through this pipe, and return the results as an array. |
java.util.Iterator<Instance> |
TokenSequence2TokenInstances.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
SerialPipes.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
Pipe.newIteratorFrom(java.util.Iterator<Instance> source)
Given an InstanceIterator, return a new InstanceIterator whose instances have also been processed by this pipe. |
java.util.Iterator<Instance> |
FilterEmptyFeatureVectors.newIteratorFrom(java.util.Iterator<Instance> source)
|
java.util.Iterator<Instance> |
FeatureVectorSequence2FeatureVectors.newIteratorFrom(java.util.Iterator<Instance> inputIterator)
|
java.util.Iterator<Instance> |
BranchingPipe.newIteratorFrom(java.util.Iterator<Instance> source)
Deprecated. |
Uses of Instance in cc.mallet.pipe.iterator |
---|
Methods in cc.mallet.pipe.iterator that return Instance | |
---|---|
Instance |
UnlabeledFileIterator.next()
|
Instance |
StringArrayIterator.next()
|
Instance |
SimpleFileLineIterator.next()
|
Instance |
SelectiveFileLineIterator.next()
|
Instance |
SegmentIterator.next()
|
Instance |
RandomTokenSequenceIterator.next()
|
Instance |
RandomFeatureVectorIterator.next()
|
abstract Instance |
PipeInputIterator.next()
Deprecated. |
Instance |
PipeExtendedIterator.next()
Deprecated. |
Instance |
PatternMatchIterator.next()
|
Instance |
ParenGroupIterator.next()
|
Instance |
LineIterator.next()
|
Instance |
LineGroupIterator.next()
|
Instance |
FileUriIterator.next()
|
Instance |
FileListIterator.next()
|
Instance |
FileIterator.next()
|
Instance |
EmptyInstanceIterator.next()
|
Instance |
CsvIterator.next()
|
Instance |
ConcatenatedInstanceIterator.next()
|
Instance |
ArrayIterator.next()
|
Instance |
ArrayDataAndTargetIterator.next()
|
Constructors in cc.mallet.pipe.iterator with parameters of type Instance | |
---|---|
SegmentIterator(Instance instance,
java.lang.Object[] startTags,
java.lang.Object[] inTags,
Sequence prediction)
Iterate over segments in one instance. |
|
SegmentIterator(Transducer model,
Instance instance,
java.lang.Object[] segmentStartTags,
java.lang.Object[] segmentContinueTags)
Iterates over Segment s for only one Instance . |
Constructor parameters in cc.mallet.pipe.iterator with type arguments of type Instance | |
---|---|
PipeExtendedIterator(java.util.Iterator<Instance> iterator,
Pipe pipe)
Deprecated. Creates a new PipeExtendedIterator instance. |
Uses of Instance in cc.mallet.pipe.tests |
---|
Methods in cc.mallet.pipe.tests that return Instance | |
---|---|
Instance |
TestSGML2TokenSequence.Array2ArrayIterator.pipe(Instance carrier)
|
Instance |
TestInstancePipe.Array2ArrayIterator.pipe(Instance carrier)
|
Methods in cc.mallet.pipe.tests with parameters of type Instance | |
---|---|
Instance |
TestSGML2TokenSequence.Array2ArrayIterator.pipe(Instance carrier)
|
Instance |
TestInstancePipe.Array2ArrayIterator.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.pipe.tsf |
---|
Methods in cc.mallet.pipe.tsf that return Instance | |
---|---|
Instance |
TrieLexiconMembership.pipe(Instance carrier)
|
Instance |
TokenTextNGrams.pipe(Instance carrier)
|
Instance |
TokenTextCharSuffix.pipe(Instance carrier)
|
Instance |
TokenTextCharPrefix.pipe(Instance carrier)
|
Instance |
TokenTextCharNGrams.pipe(Instance carrier)
|
Instance |
TokenText.pipe(Instance carrier)
|
Instance |
TokenFirstPosition.pipe(Instance instance)
|
Instance |
Target2BIOFormat.pipe(Instance carrier)
|
Instance |
SequencePrintingPipe.pipe(Instance carrier)
|
Instance |
RegexMatches.pipe(Instance carrier)
|
Instance |
OffsetPropertyConjunctions.pipe(Instance carrier)
|
Instance |
OffsetFeatureConjunction.pipe(Instance carrier)
|
Instance |
OffsetConjunctions.pipe(Instance carrier)
|
Instance |
LexiconMembership.pipe(Instance carrier)
|
Instance |
FeaturesOfFirstMention.pipe(Instance carrier)
|
Instance |
FeaturesInWindow.pipe(Instance carrier)
|
Instance |
CountMatchesMatching.pipe(Instance carrier)
|
Instance |
CountMatchesAlignedWithOffsets.pipe(Instance carrier)
|
Instance |
CountMatches.pipe(Instance carrier)
|
Methods in cc.mallet.pipe.tsf with parameters of type Instance | |
---|---|
Instance |
TrieLexiconMembership.pipe(Instance carrier)
|
Instance |
TokenTextNGrams.pipe(Instance carrier)
|
Instance |
TokenTextCharSuffix.pipe(Instance carrier)
|
Instance |
TokenTextCharPrefix.pipe(Instance carrier)
|
Instance |
TokenTextCharNGrams.pipe(Instance carrier)
|
Instance |
TokenText.pipe(Instance carrier)
|
Instance |
TokenFirstPosition.pipe(Instance instance)
|
Instance |
Target2BIOFormat.pipe(Instance carrier)
|
Instance |
SequencePrintingPipe.pipe(Instance carrier)
|
Instance |
RegexMatches.pipe(Instance carrier)
|
Instance |
OffsetPropertyConjunctions.pipe(Instance carrier)
|
Instance |
OffsetFeatureConjunction.pipe(Instance carrier)
|
Instance |
OffsetConjunctions.pipe(Instance carrier)
|
Instance |
LexiconMembership.pipe(Instance carrier)
|
Instance |
FeaturesOfFirstMention.pipe(Instance carrier)
|
Instance |
FeaturesInWindow.pipe(Instance carrier)
|
Instance |
CountMatchesMatching.pipe(Instance carrier)
|
Instance |
CountMatchesAlignedWithOffsets.pipe(Instance carrier)
|
Instance |
CountMatches.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.share.casutton.ner |
---|
Methods in cc.mallet.share.casutton.ner that return Instance | |
---|---|
Instance |
ConllNer2003Sentence2TokenSequence.pipe(Instance carrier)
|
Methods in cc.mallet.share.casutton.ner with parameters of type Instance | |
---|---|
Instance |
ConllNer2003Sentence2TokenSequence.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.share.mccallum.ner |
---|
Methods in cc.mallet.share.mccallum.ner that return Instance | |
---|---|
Instance |
TokenSequenceDocHeader.pipe(Instance carrier)
|
Instance |
ConllNer2003Sentence2TokenSequence.pipe(Instance carrier)
|
Methods in cc.mallet.share.mccallum.ner with parameters of type Instance | |
---|---|
Instance |
TokenSequenceDocHeader.pipe(Instance carrier)
|
Instance |
ConllNer2003Sentence2TokenSequence.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.share.upenn |
---|
Method parameters in cc.mallet.share.upenn with type arguments of type Instance | |
---|---|
static Classification[] |
MaxEntShell.classify(Classifier classifier,
java.util.Iterator<Instance> data)
Compute the maxent classifications for unlabeled instances given by an iterator. |
static double |
MaxEntShell.test(Classifier classifier,
java.util.Iterator<Instance> data)
Test a maxent classifier. |
static Classifier |
MaxEntShell.train(java.util.Iterator<Instance> data,
double var,
java.io.File save)
Train a maxent classifier. |
Uses of Instance in cc.mallet.share.upenn.ner |
---|
Methods in cc.mallet.share.upenn.ner that return Instance | |
---|---|
Instance |
LongRegexMatches.pipe(Instance carrier)
|
Instance |
ListMember.pipe(Instance carrier)
|
Instance |
LengthBins.pipe(Instance carrier)
|
Instance |
FeatureWindow.pipe(Instance carrier)
|
Methods in cc.mallet.share.upenn.ner with parameters of type Instance | |
---|---|
Instance |
LongRegexMatches.pipe(Instance carrier)
|
Instance |
ListMember.pipe(Instance carrier)
|
Instance |
LengthBins.pipe(Instance carrier)
|
Instance |
FeatureWindow.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.share.weili.ner.enron |
---|
Methods in cc.mallet.share.weili.ner.enron that return Instance | |
---|---|
Instance |
EnronMessage2TokenSequence.pipe(Instance carrier)
|
Methods in cc.mallet.share.weili.ner.enron with parameters of type Instance | |
---|---|
Instance |
EnronMessage2TokenSequence.pipe(Instance carrier)
|
Uses of Instance in cc.mallet.topics |
---|
Fields in cc.mallet.topics declared as Instance | |
---|---|
Instance |
TopicAssignment.instance
|
Instance |
LDAHyper.Topication.instance
|
Instance[] |
PolylingualTopicModel.TopicAssignment.instances
|
Methods in cc.mallet.topics with parameters of type Instance | |
---|---|
double[] |
TopicInferencer.getSampledDistribution(Instance instance,
int numIterations,
int thinning,
int burnIn)
Use Gibbs sampling to infer a topic distribution. |
protected int |
LDAHyper.instanceLength(Instance instance)
Deprecated. |
void |
DMRTopicModel.setAlphas(Instance instance)
Set alpha based on features in an instance |
Constructors in cc.mallet.topics with parameters of type Instance | |
---|---|
LDAHyper.Topication(Instance instance,
LDAHyper model,
LabelSequence topicSequence)
|
|
PolylingualTopicModel.TopicAssignment(Instance[] instances,
LabelSequence[] topicSequences)
|
|
TopicAssignment(Instance instance,
LabelSequence topicSequence)
|
Uses of Instance in cc.mallet.types |
---|
Methods in cc.mallet.types that return Instance | |
---|---|
Instance |
PagedInstanceList.get(int index)
Returns the Instance at the specified index. |
Instance |
MultiInstanceList.get(int index)
|
Instance |
SingleInstanceIterator.next()
|
abstract Instance |
ChainedInstanceIterator.next()
Deprecated. |
Instance |
MultiInstanceList.remove(int index)
|
Instance |
InstanceList.remove(int index)
|
Instance |
PagedInstanceList.set(int index,
Instance instance)
Replaces the Instance at position
index with a new one. |
Instance |
MultiInstanceList.set(int index,
Instance instance)
|
Instance |
InstanceList.set(int index,
Instance instance)
|
Instance |
Instance.shallowCopy()
|
Methods in cc.mallet.types that return types with arguments of type Instance | |
---|---|
java.util.Iterator<Instance> |
MultiInstanceList.iterator()
|
java.util.ListIterator<Instance> |
MultiInstanceList.listIterator()
|
java.util.ListIterator<Instance> |
MultiInstanceList.listIterator(int index)
|
Methods in cc.mallet.types with parameters of type Instance | |
---|---|
boolean |
PagedInstanceList.add(Instance instance)
Appends the instance to this list. |
boolean |
MultiInstanceList.add(Instance instance)
|
boolean |
InstanceList.add(Instance instance)
Appends the instance to this list without passing the instance through the InstanceList's pipe. |
boolean |
MultiInstanceList.add(Instance instance,
double instanceWeight)
|
boolean |
InstanceList.add(Instance instance,
double instanceWeight)
Appends the instance to this list without passing it through this InstanceList's pipe, assigning it the specified weight. |
void |
MultiInstanceList.add(int index,
Instance element)
|
void |
InstanceList.add(int index,
Instance element)
|
void |
InstanceList.addThruPipe(Instance inst)
Adds the input instance to this list, after passing it through the InstanceList's pipe. |
double |
InstanceList.getInstanceWeight(Instance instance)
|
boolean |
Labeler.label(Instance instanceToLabel)
Given the (presumably unlabeled) instanceToLabel, set its target field to the true label. |
boolean |
MultiInstanceList.remove(Instance instance)
|
boolean |
InstanceList.remove(Instance instance)
|
Instance |
PagedInstanceList.set(int index,
Instance instance)
Replaces the Instance at position
index with a new one. |
Instance |
MultiInstanceList.set(int index,
Instance instance)
|
Instance |
InstanceList.set(int index,
Instance instance)
|
void |
MultiInstanceList.setInstance(int index,
Instance instance)
|
void |
InstanceList.setInstance(int index,
Instance instance)
Replaces the Instance at position index
with a new one. |
void |
MultiInstanceList.setInstanceWeight(Instance instance,
double weight)
|
void |
InstanceList.setInstanceWeight(Instance instance,
double weight)
|
Method parameters in cc.mallet.types with type arguments of type Instance | |
---|---|
boolean |
InstanceList.addAll(java.util.Collection<? extends Instance> instances)
|
boolean |
InstanceList.addAll(int index,
java.util.Collection<? extends Instance> c)
|
void |
InstanceList.addThruPipe(java.util.Iterator<Instance> ii)
Adds to this list every instance generated by the iterator, passing each one through this InstanceList's pipe. |
boolean |
ChainedInstanceIterator.sourceNowHasNext(java.util.Iterator<Instance> source)
Deprecated. The "source" of this iterator sends this message to tell this iterator that, even though source.hasNext() may have returned false before, it would now return true. |
Constructors in cc.mallet.types with parameters of type Instance | |
---|---|
SingleInstanceIterator(Instance inst)
|
Constructor parameters in cc.mallet.types with type arguments of type Instance | |
---|---|
ChainedInstanceIterator(java.util.Iterator<Instance> source,
ChainedInstanceIterator target)
Deprecated. Both source and target may be null. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |